Strongly ergodic sequences of integers and the individual ergodic theorem

Type: Article

Publication Date: 1982-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9939-1982-0674086-2

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S equals StartSet k 1 comma k 2 comma ellipsis EndSet"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>k</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>k</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">S = \{ {k_1},{k_2}, \ldots \}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an increasing sequence of positive integers. We call <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <italic>strongly ergodic</italic> if for every measure preserving transformation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a probability space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis normal upper Omega comma script upper F comma upper P right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">F</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(\Omega ,\mathcal {F},P)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f element-of upper L 1 left-parenthesis normal upper Omega right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f \in {L_1}(\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we have <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="limit Underscript n right-arrow normal infinity Endscripts left-parenthesis 1 slash n right-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts f left-parenthesis upper T Superscript k j Baseline omega right-parenthesis equals upper P f left-parenthesis omega right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msubsup> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>T</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mi>j</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>P</mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\lim _{n \to \infty }}(1/n)\sum \nolimits _{j = 1}^n {f({T^{kj}}\omega ) = Pf(\omega )}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a.e. where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P f"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">Pf</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the appropriate limit guaranteed by the individual ergodic theorem. We give sufficient conditions for a sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to be strongly ergodic and provide examples.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Strongly Ergodic Sequences of Integers and the Individual Ergodic Theorem 1982 J. R. Blum
J. I. Reich
+ PDF Chat A companion to the Oseledec multiplicative ergodic theorem 1987 Joseph C. Watkins
+ PDF Chat The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences 1985 Alexandra Bellow
Viktor Losert
+ PDF Chat Polynomially moving ergodic averages 1988 Mark S. Schwartz
+ PDF Chat Strong uniform distributions and ergodic theorems 1975 J. R. Blum
L. Hahn
+ PDF Chat An individual ergodic theorem 1977
+ PDF Chat Upper bounds for ergodic sums of infinite measure preserving transformations 1990 Jon Aaronson
Manfred Denker
+ PDF Chat On the Individual Ergodic Theorem for Subsequences 1977 J. I. Reich
+ PDF Chat An abelian ergodic theorem for semigroups in 𝐿_{𝑝} space 1976 S. A. McGrath
+ PDF Chat On ergodic sequences of measures 1975 J. R. Blum
Robert Cogburn
+ PDF Chat On the punctual and local ergodic theorem for nonpositive power bounded operators in 𝐿^{𝑝}_{𝐶}[0,1],1&lt;𝑝&lt;+∞ 1986 Idris Assani
+ On 𝑑-parameter pointwise ergodic theorems in 𝐿₁ 1995 Shigeru Hasegawa
Ryōtarō Satō
+ Strongly ergodic actions have local spectral gap 2018 Amine Marrakchi
+ Sequences of integers and ergodic transformations 1989 Stanley Eigen
Arshag Hajian
+ PDF Chat A note on the ergodic theorem 1984 Takeshi Yoshimoto
+ PDF Chat On the Individual Ergodic Theorem for Subsequences 1971 Ulrich Krengel
+ PDF Chat On the individual ergodic theorem for subsequences 1973 Ryōtarō Satō
+ Universal characteristic factors and Furstenberg averages 2006 Tamar Ziegler
+ PDF Chat Local ergodicity of nonpositive contractions on 𝐶(𝑋) 1983 Robert E. Atalla
+ PDF Chat On the uniform ergodic theorem of Lin 1981 Stuart P. Lloyd