TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework

Type: Article

Publication Date: 1989-01-01

Citations: 1861

DOI: https://doi.org/10.1090/s0025-5718-1989-0983311-4

Abstract

This is the second paper in a series in which we construct and analyze a class of TVB (total variation bounded) discontinuous Galerkin finite element methods for solving conservation laws <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u Subscript t Baseline plus sigma-summation Underscript i equals 1 Overscript d Endscripts left-parenthesis f Subscript i Baseline left-parenthesis u right-parenthesis right-parenthesis Subscript x Sub Subscript i Baseline equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>d</mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{u_t} + \sum \nolimits _{i = 1}^d {{{({f_i}(u))}_{{x_i}}} = 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper we present a general framework of the methods, up to any order of formal accuracy, using scalar one-dimensional initial value and initial-boundary problems as models. In these cases we prove TVBM (total variation bounded in the means), TVB, and convergence of the schemes. Numerical results using these methods are also given. Extensions to systems and/or higher dimensions will appear in future papers.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems 1989 Bernardo Cockburn
San‐Yih Lin
Chi‐Wang Shu
+ A RUNGE-KUTTA BASED DISCONTINUOUS GALERKIN METHOD WITH TIME ACCURATE LOCAL TIME STEPPING 2011 Gregor J. Gassner
Florian Hindenlang
Claus‐Dieter Munz
+ The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V 1998 Bernardo Cockburn
Chi‐Wang Shu
+ A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations 2011 Yingda Cheng
Irene M. Gamba
Armando Majorana
Chi‐Wang Shu
+ Local Discontinuous Galerkin Methods for the Boussinesq Coupled BBM System 2017 Joshua Buli
Yulong Xing
+ Fourier analysis of the local discontinuous Galerkin method for the linearized KdV equation 2022 Daniel Y. Le Roux
+ A discontinuous galerkin formulation for solid dynamics 2006 Jaume Peraire Guitart
Javier Bonet Carbonell
Antonio Huerta
Per Olof Persson
Yolanda Vidal
+ The Discontinuous Petrov-Galerkin Method 2001 Carlo L. Bottasso
Paola Causin
Stefano Micheletti
Riccardo Sacco
+ A bound- and positivity-preserving discontinuous Galerkin method for solving the γ-based model 2024 Haiyun Wang
Hongqiang Zhu
Zhen Gao
+ Nonconforming Virtual Element basis functions for space-time Discontinuous Galerkin schemes on unstructured Voronoi meshes 2023 Walter Boscheri
Giulia Bertaglia
+ Local discontinuous Galerkin methods with implicit–explicit BDF time marching for Newell–Whitehead–Segel equations 2024 Haijin Wang
Xiaobin Shi
Rumeng Shao
Hongqiang Zhu
Yanping Chen
+ A Riemann-solver-free Runge-Kutta Discontinuous Galerkin Method for Conservation Laws 2017 Shuangzhang Tu
+ The local discontinuous Galerkin finite element method for a class of convection–diffusion equations 2012 Wenjuan Wu
Xinlong Feng
Demin Liu
+ The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis 2019 Changpin Li
Zhen Wang
+ Local Discontinuous Galerkin Methods to a Dispersive System of KdV-Type Equations 2021 Chao Zhang
Yan Xu
Yinhua Xia
+ Discontinuous Galerkin finite element method for two dimensional conservation laws 1993 San‐Yih Lin
Y Chin
YUNG-FU DUNG
C.C. Hong
YUH-YING WANG
Chih-Hsin Ko
+ PDF Chat A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives 2007 Yingda Cheng
Chi‐Wang Shu
+ Local discontinuous Galerkin methods for the generalized Zakharov system 2009 Yinhua Xia
Yan Xu
Chi‐Wang Shu
+ A structure-preserving local discontinuous Galerkin method for the stochastic KdV equation 2024 Xuewei Liu
Zhanwen Yang
Qiang Ma
Xiaohua Ding
+ PDF Chat High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation 2016 Robert Anderson
Veselin Dobrev
Tzanio Kolev
Dmitri Kuzmin
Manuel Quezada de Luna
Robert N. Rieben
Vladimir Tomov

Works That Cite This (934)

Action Title Year Authors
+ A Compact Third-order Gas-kinetic Scheme for Compressible Euler and Navier-Stokes Equations 2014 Liang Pan
Kun Xu
+ Strongly consistent low-dissipation WENO schemes for finite elements 2024 Joshua Vedral
Andreas Rupp
Dmitri Kuzmin
+ PDF Chat A compact fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations 2018 Xing Ji
Liang Pan
Wei Shyy
Kun Xu
+ PDF Chat Spectral semi-implicit and space–time discontinuous Galerkin methods for the incompressible Navier–Stokes equations on staggered Cartesian grids 2016 Francesco Fambri
Michael Dumbser
+ High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters 2019 Jun Zhu
Jianxian Qiu
Chi‐Wang Shu
+ A massively parallel adaptive finite element method with dynamic load balancing 1993 Karen Devine
Joseph E. Flaherty
Stephen R. Wheat
Arthur B. Maccabe
+ PDF Chat Runge–Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics 2017 Jian Zhao
Huazhong Tang
+ A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems 2017 Qiang Du
Lili Ju
Jianfang Lu
+ PDF Chat Energy relaxation approximation for compressible multicomponent flows in thermal nonequilibrium 2022 Claude Marmignon
Fabio Naddei
Florent Renac
+ PDF Chat Discontinuous Galerkin methods for hypersonic flows 2024 Dominique S. Hoskin
R. Loek Van Heyningen
Ngoc Cuong Nguyen
Jordi Vila‐Pérez
Wesley L. Harris
J. Peraire