Type: Article
Publication Date: 1989-01-01
Citations: 1861
DOI: https://doi.org/10.1090/s0025-5718-1989-0983311-4
This is the second paper in a series in which we construct and analyze a class of TVB (total variation bounded) discontinuous Galerkin finite element methods for solving conservation laws <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u Subscript t Baseline plus sigma-summation Underscript i equals 1 Overscript d Endscripts left-parenthesis f Subscript i Baseline left-parenthesis u right-parenthesis right-parenthesis Subscript x Sub Subscript i Baseline equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>d</mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{u_t} + \sum \nolimits _{i = 1}^d {{{({f_i}(u))}_{{x_i}}} = 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper we present a general framework of the methods, up to any order of formal accuracy, using scalar one-dimensional initial value and initial-boundary problems as models. In these cases we prove TVBM (total variation bounded in the means), TVB, and convergence of the schemes. Numerical results using these methods are also given. Extensions to systems and/or higher dimensions will appear in future papers.