On the endpoint regularity of discrete maximal operators

Type: Article

Publication Date: 2012-01-01

Citations: 37

DOI: https://doi.org/10.4310/mrl.2012.v19.n6.a6

Abstract

Given a discrete function $f:\Z^d \to \R$ we consider the maximal operator $$Mf(\vec{n}) = \sup_{r\geq0} \frac{1}{N(r)} \sum_{\vec{m} \in \bar{\Omega}_r} \big|f(\vec{n} + \vec{m})\big|,$$ where $\big\{\bar{\Omega}_r\big\}_{r \geq 0}$ are dilations of a convex set $\Omega$ (open, bounded and with Lipschitz boudary) containing the origin and $N(r)$ is the number of lattice points inside $\bar{\Omega}_r$. We prove here that the operator $f \mapsto \nabla M f$ is bounded and continuous from $l^1(\Z^d)$ to $l^1(\Z^d)$. We also prove the same result for the non-centered version of this discrete maximal operator.

Locations

  • Mathematical Research Letters - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A REMARK ON THE REGULARITY OF THE DISCRETE MAXIMAL OPERATOR 2016 Feng Liu
+ PDF Chat A note on the endpoint regularity of the discrete maximal operator 2017 Feng Liu
Huoxiong Wu
+ PDF Chat Endpoint regularity of discrete multisublinear fractional maximal operators associated with ℓ 1 $\ell^{1}$ -balls 2018 Feng Liu
+ PDF Chat On a discrete version of Tanaka’s theorem for maximal functions 2011 Jonathan Bober
Emanuel Carneiro
Kevin Hughes
Lillian B. Pierce
+ PDF Chat On the variation of the discrete maximal operator 2020 Feng Liu
+ On the Hardy--Littlewood maximal functions in high dimensions: Continuous and discrete perspective 2018 Jean Bourgain
Mariusz Mirek
Elias M. Stein
Błażej Wróbel
+ PDF Chat On the Hardy–Littlewood Maximal Functions in High Dimensions: Continuous and Discrete Perspective 2021 Jean Bourgain
Mariusz Mirek
Elias M. Stein
Błażej Wróbel
+ SHARP WEIGHTED BOUNDS FOR GEOMETRIC MAXIMAL OPERATORS 2016 Adam Osȩkowski
+ PDF Chat Regularity of Maximal Operators: Recent Progress and Some Open Problems 2019 Emanuel Carneiro
+ Endpoint Sobolev continuity of the fractional maximal function in higher dimensions 2019 David Beltrán
José Madrid
+ Endpoint Sobolev continuity of the fractional maximal function in higher dimensions 2019 David Beltran
José Madrid
+ Boundedness properties of maximal operators on Lorentz spaces 2019 Dariusz Kosz
+ PDF Chat Short remark on dimension-free estimates for discrete maximal functions over $l^q$ balls: small scale 2024 Jakub Niksiński
+ PDF Chat Endpoint Sobolev and BV continuity for maximal operators 2017 Emanuel Carneiro
José Madrid
Lillian B. Pierce
+ Sunrise strategy for the continuity of maximal operators 2020 Emanuel Carneiro
Cristian González-Riquelme
José Madrid
+ Endpoint Sobolev Bounds for the Uncentered Fractional Maximal Function 2020 Julian Weigt
+ Some remarks on dimension-free estimates for the discrete Hardy-Littlewood maximal functions 2020 Dariusz Kosz
Mariusz Mirek
Paweł Plewa
Błażej Wróbel
+ On Discrete Hardy–Littlewood Maximal Functions over the Balls in $${\boldsymbol {\mathbb {Z}^d}}$$ : Dimension-Free Estimates 2020 Jean Bourgain
Mariusz Mirek
Elias M. Stein
Błażej Wróbel
+ PDF Chat Sunrise strategy for the continuity of maximal operators 2022 Emanuel Carneiro
Cristian González-Riquelme
José Madrid
+ PDF Chat On logarithmic bounds of maximal sparse operators 2019 G. A. Karagulyan
Michael T. Lacey