Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment

Type: Article

Publication Date: 2014-07-01

Citations: 9

DOI: https://doi.org/10.3103/s1066530714030016

Abstract

We consider a one-dimensional sub-ballistic random walk evolving in a parametric i.i.d. random environment. We study the asymptotic properties of the maximum likelihood estimator (MLE) of the parameter based on a single observation of the path till the time it reaches a distant site. For that purpose, we adapt the method developed in the ballistic case by Comets et al. (2014) and Falconnet et al. (2014). Using a supplementary assumption due to the special nature of the sub-ballistic regime, we prove consistency and asymptotic normality as the distant site tends to infinity. To emphasize the role of the additional assumption, we investigate the Temkin model with unknown support, and it turns out that the MLE is consistent but, unlike the ballistic regime, the Fisher information is infinite. We also explore the numerical performance of our estimation procedure.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Mathematical Methods of Statistics - View

Similar Works

Action Title Year Authors
+ Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment 2014 Mikael Falconnet
Dasha Loukianova
Arnaud Gloter
+ Maximum likelihood estimator consistency for ballistic random walk in a parametric random environment 2012 Francis Comets
Mikael Falconnet
Oleg Loukianov
Dasha Loukianova
Catherine Matias
+ PDF Chat Maximum likelihood estimator consistency for ballistic random walk in a parametric random environment 2014 Francis Comets
Mikael Falconnet
Oleg Loukianov
Dasha Loukianova
Catherine Matias
+ Maximum likelihood for ballistic random walk in a parametric random environment 2012 Francis Comets
Mikael Falconnet
Oleg Loukianov
Dasha Loukianova
Catherine Matias
+ Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment 2014 Mikael Falconnet
Dasha Loukianova
Catherine Matias
+ Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment 2013 Francis Comets
Mikael Falconnet
Oleg Loukianov
Dasha Loukianova
Catherine Matias
+ PDF Chat Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support 2016 Francis Comets
Mikael Falconnet
Oleg Loukianov
Dasha Loukianova
+ Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support 2014 Francis Comets
Mikael Falconnet
Oleg Loukianov
Dasha Loukianova
+ Parametric estimation of a one-dimensional ballistic random walk in a Markov reversible environment 2014 Pierre Andreoletti
Dasha Loukianova
Catherine Matias
+ Parametric estimation of a one-dimensional ballistic random walk in a Markov environment 2014 Pierre Andreoletti
Dasha Loukianova
Catherine Matias
+ Parametric estimation of a one-dimensional ballistic random walk in a Markov environment 2014 Pierre Andreoletti
Dasha Loukianova
Catherine Matias
+ PDF Chat Diffusions in random environment and ballistic behavior 2006 Tom Schmitz
+ PDF Chat Tail estimates for one-dimensional random walk in random environment 1996 Amir Dembo
Yuval Peres
Ofer Zeitouni
+ PDF Chat Estimation of the environment distribution of a random walk in random environment 2019 Antoine Havet
+ PDF Chat Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment 2017 Milton Jara
Jonathon Peterson
+ Non parametric estimation for random walks in random environment 2016 Roland Diel
Matthieu Lerasle
+ Quenched Sub-Exponential Tail Estimates for One-Dimensional Random Walk in Random Environment 1998 Nina Gantert
Ofer Zeitouni
+ Asymptotic distributions of continuous-time random walks: A probabilistic approach 1995 Marcin Kotulski
+ Non parametric estimation for random walks in random environment 2016 Roland Diel
Matthieu Lerasle
+ Density estimation for RWRE 2018 Antoine Havet
Matthieu Lerasle
Éric Moulines