On the solvability of the Diophantine equation<i>dV</i><sup>2</sup>− 2<i>eV W</i>−<i>dW</i><sup>2</sup>= 1

Type: Article

Publication Date: 1986-09-01

Citations: 14

DOI: https://doi.org/10.2140/pjm.1986.124.145

Abstract

This paper treats the dίophantίne equation dV 2 -2eVW -dW 2 = 1, where d and e are positive integers, by methods using the arithmetic of the ring of the gaussian integers.

Locations

  • Pacific Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Diophantine equation <i>a</i><i>x</i><sup>2</sup> + 2<i>b</i><i>x</i><i>y</i> − 4<i>a</i><i>y</i><sup>2</sup> = ±1 2003 Lionel Bapoungué
+ On the Diophantine Equation <i>F</i> ≡<i>ax</i> <sup>4</sup> +<i>by</i> <sup>4</sup> +<i>cz</i> <sup>4</sup> +<i>dw</i> <sup>4</sup> =0, the Product <i>abcd</i> Being a Square Number 1944 H. W. Richmond
+ On the Diophantine Equation <i>mX</i><sup>2</sup>-<i>nY</i><sup>2</sup>=±1 1967 David Walker
+ PDF Chat On the Diophantine equation 𝑥^{𝑝}+𝑦^{𝑝}=𝑐𝑧^{𝑝} 1965 Taro Morishima
Takeo Miyoshi
+ On the Diophantine equations <i>x</i> <sup>2</sup> − 27<i>y</i> <sup>2</sup> = 1 and <i>y</i> <sup>2</sup> − 2<sup> <i>p</i> </sup> <i>z</i> <sup>2</sup> = 25 2018 Jianhong Zhao
+ Diofantske jednadžbe višeg stupnja 2019 Dora Sučić
+ On the diophantine equation $$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{w} + \frac{1}{{xyzw}} = 0$$ 1985 Mingzhi Zhang
+ PDF Chat The solvability of the diophantine equation $D_1x^2-D_2y^4=1$ 1995 LE Mao-hua
+ PDF Chat On the diophantine equation D₁x⁴ -D₂y² = 1 1996 LE Mao-hua
+ PDF Chat On the Diophantine equation 𝑥³+𝑦³+𝑧³=𝑥+𝑦+𝑧 1966 A. Oppenheim
+ 2015. A note on the diophantine equation <i>z</i><sup>2</sup> = <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> 1948 R. S. F. Goonewardena
+ On the Diophantine Equation ( <i>x</i> ( <i>x</i> -1)/2) <sup>2</sup> = ( <i>y</i> ( <i>y</i> -1)/2) 1996 Ming Luo
+ Studies of Positive Integer Solutions of the Diophantine Equation <i>x</i><sup>2</sup> − <i>a</i><i>y</i><sup>2</sup> − <i>b</i><i>x</i> − <i>c</i><i>y</i> − <i>d</i> = 0 by the Transformation Method 2024 Francklin Fenolahy
Harrimann Ramanantsoa
André Totohasina
+ PDF Chat The Diophantine equation x² + 3ᵃ · 5ᵇ · 11ᶜ · 19ᵈ = 4yⁿ 2021 Nguyen Xuan Tho
+ On the Diophantine equation ∑ <sup>5</sup> <sub> <i>k</i> =1 </sub> <i> F <sub>n</sub> <sub>k</sub> </i> = 2 <sup> <i>a</i> </sup> 2022 Pagdame Tiebekabe
Ismaïla Diouf
+ PDF Chat On The Diophantine Equation <i>x<sup>a</sup></i> + <i>y<sup>a</sup> </i>= <i>p<sup>k</sup>z<sup>b</sup></i> 2017 Keng Yarn Wong
Hailiza Kamarulhaili
+ The Diophantine Equation <i>x</i><sup>2</sup> + <i>y</i><sup><i>m</i></sup> = <i>z</i><sup>2<i>n</i></sup>, Addendum 1990 David W. Boyd
+ On the Diophantine Equation <i>x</i> <sup>2</sup> + 2 <sup> <i>a</i> </sup> · 11 <sup> <i>b</i> </sup> = <i>y</i> <sup> <i>n</i> </sup> 2010 İsmail Naci Cangül
Musa Demi̇rci̇
Florian Luca
Ákos Pintér
Gökhan Soydan
+ PDF Chat On the Diophantine Equation <i>a</i> <i> <sup>x</sup> </i> +(<i>a</i> +2)<i> <sup>y</sup> </i> = <i>z</i> <sup>2</sup> Where <i>a</i> ≡ 5 (mod 42) 2020 Rakporn Dokchann
Apisit Pakapongpun
+ PDF Chat On the diophantine equation u2 −D v2 = ± 4N 1955 Bengt Stolt