Numerical studies of the compressible Ising spin glass

Type: Article

Publication Date: 2006-04-04

Citations: 4

DOI: https://doi.org/10.1209/epl/i2005-10564-5

Abstract

We study a two-dimensional compressible Ising spin glass at constant volume. The spin interactions are coupled to the distance between neighboring particles in the Edwards-Anderson model with ±J interactions. We find that the energy of a given spin configuration is shifted from its incompressible value, E0, by an amount quadratic in E0 and proportional to the coupling strength. We then construct a simple model expressed only in terms of spin variables that predicts the existence of a critical value of the coupling above which the spin-glass transition cannot exist.

Locations

  • EPL (Europhysics Letters) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Numerical Studies of Compressible Ising Spin Glasses 2003 Adam H. Marshall
Bulbul Chakraborty
Sidney R. Nagel
+ PDF Chat Compressible Ising spin glass: Simulation results 2007 Adam H. Marshall
+ Monte Carlo simulations of a compressible Ising ferromagnet at constant volume 2005 D. P. Landau
Francesca Tavazza
Joan Adler
+ Effects of Lattice Compressibility on Critical Behavior 1970 George A. Baker
J W Essam
+ PDF Chat Physics of the Edwards-Anderson Spin Glass in Dimensions $d=3,\ldots,8$ from Heuristic Ground State Optimization 2024 Stefan Boettcher
+ PDF Chat Critical behaviour of the four-dimensional spin glass in magnetic field 1998 Enzo Marinari
C. Naitza
Francesco Zuliani
+ A Monte Carlo study of coupled Ising chains 1978 D. P. Landau
Tom Graim
+ Monte Carlo studies of critical phase behaviors of compressible Ising models 2005 Xiaoliang Zhu
+ PDF Chat Numerical simulations of the four-dimensional Edwards-Anderson spin glass with binary couplings 1999 Enzo Marinari
Francesco Zuliani
+ Numerical study of the TAP equations for infinite-range spin glass models 1992 Terufumi Yokota
+ Three Dimensional Edwards-Anderson Spin Glass Model in an External Field 2014 Sheng Feng
Fang Ye
Ka-Ming Tam
Zhifeng Yun
J. Ramanujam
Juana Moreno
Mark Jarrell
+ Physics of the Edwards–Anderson spin glass in dimensions d = 3, … ,8 from heuristic ground state optimization 2024 Stefan Boettcher
+ The Hubbard model: A computational perspective 2021 Mingpu Qin
Thomas Schäfer
Sabine Andergassen
Philippe Corboz
Emanuel Gull
+ PDF Chat The Hubbard Model: A Computational Perspective 2021 Mingpu Qin
Thomas Schäfer
Sabine Andergassen
Philippe Corboz
Emanuel Gull
+ PDF Chat Interface Energy in the Edwards-Anderson Model 2010 Pierluigi Contucci
Cristian Giardinà
Claudio Giberti
Giorgio Parisi
Cecilia Vernia
+ Relaxation of Ising models near and away from criticality 1997 Dietrich Stauffer
+ PDF Chat Critical behavior of the three-dimensional compressible Ising antiferromagnet at constant volume: A Monte Carlo study 2005 Luigi Cannavacciuolo
D. P. Landau
+ Recent numerical results on spin glasses 2005 Peter R. Young
+ PDF Chat The hobbyhorse of magnetic systems: the Ising model 2016 Eduardo Ibarra-García-Padilla
Carlos Gerardo Malanche-Flores
F. J. Poveda-Cuevas
+ Energy relaxation in Ising models 1994 Markus Siegert
Dietrich Stauffer

Works Cited by This (8)

Action Title Year Authors
+ PDF Chat Effects of ground-state degeneracy on the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>±</mml:mo><mml:mi>J</mml:mi></mml:math>spin glass 2001 Matteo Palassini
A. P. Young
+ PDF Chat Scalings of Domain Wall Energies in Two Dimensional Ising Spin Glasses 2003 C. Amoruso
Enzo Marinari
Olivier Martin
Andrea Pagnani
+ PDF Chat Probing Spin Correlations with Phonons in the Strongly Frustrated Magnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ZnCr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2005 A. B. Sushkov
Oleg Tchernyshyov
W. Ratcliff
S.-W. Cheong
H. D. Drew
+ Critical behavior of an Ising model on a cubic compressible lattice 1976 David J. Bergman
B. I. Halperin
+ PDF Chat First-order nature of the ferromagnetic phase transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant="normal">La</mml:mi><mml:mtext>‐</mml:mtext><mml:mi mathvariant="normal">Ca</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi mathvariant="normal">Mn</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>near optimal doping 2004 C. P. Adams
J. W. Lynn
V. N. Smolyaninova
Amlan Biswas
R. L. Greene
W. Ratcliff
S-W. Cheong
Ya. M. Mukovskiǐ
D. A. Shulyatev
+ PDF Chat Tetramerization of a Frustrated Spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Chain 2003 Federico Becca
Frédéric Mila
Didier Poilblanc
+ Critical Thermodynamics of the Two-Dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>±</mml:mo><mml:mi>J</mml:mi></mml:math>Ising Spin Glass 2004 J. Lukic
Anna Galluccio
Enzo Marinari
Olivier Martin
Giovanni Rinaldi
+ Monte Carlo study of a compressible Ising antiferromagnet on a triangular lattice 1996 Lei Gu
Bulbul Chakraborty
Pedro L. Garrido
Mohan K. Phani
Joel L. Lebowitz