Global wellposedness for KdV below ${L^2}$

Type: Article

Publication Date: 1999-01-01

Citations: 40

DOI: https://doi.org/10.4310/mrl.1999.v6.n6.a13

Abstract

The initial value problem for the Korteweg-deVries equation on the line is shown to be globally wellposed for rough data.In particular, we show global wellposedness for certain initial data in H s for an interval of negative s.The proof is an adaptation of a general argument introduced by Bourgain to prove a similar result for a nonlinear Schrödinger equation.The proof relies on a generalization of the bilinear estimate of Kenig, Ponce and Vega.

Locations

  • Mathematical Research Letters - View - PDF

Similar Works

Action Title Year Authors
+ Global well-posedness for KdV in Sobolev Spaces of negative index 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
T. Tao
+ Global well-posedness for KdV in Sobolev Spaces of negative index 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence C. Tao
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vișan
+ Global well-posedness for Schrodinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces 2001 Hideo Takaoka
+ Local well posedness for KdV with data in a subspace of $H^{-1}$ and applications to illposedness theory for KdV and mKdV 2009 Luc Molinet
Baoxiang Wang
+ The nonlinear Quadratic Interactions of the Schr\"odinger type on the half-line 2021 Isnaldo Isaac Barbosa
Márcio Cavalcante
+ PDF Chat Bilinear Strichartz estimates for the ZK equation and applications 2015 Luc Molinet
Didier Pilod
+ PDF Chat Global well-posedness for the Cauchy problem of the Zakharov–Kuznetsov equation in 2D 2020 S. Kinoshita
+ Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D 2019 S. Kinoshita
+ The nonlinear Quadratic Interactions of the Schrödinger type on the half-line 2021 Isnaldo Isaac Barbosa
Márcio André Araújo Cavalcante
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vişan
+ Global well-posedness and scattering for small data for the 3-d KP-II Cauchy problem 2016 Herbert Koch
Junfeng Li
+ Global well-posedness for discrete non-linear Schrödinger equation 2009 Gaston M. N’Guérékata
А. А. Панков
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ Global well-posedness for two dimensional semilinear wave equations 2000 Germán Fonseca
+ Well-posedness of KdV type equations 2012 Xavier Carvajal
Mahendra Panthee
+ Local Well-Posedness for the Derivative Nonlinear Schrödinger Equation in Besov spaces 2016 Cai Constantin Cloos
+ PDF Chat Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator 2014 Aurélien Poiret
Didier Robert
Laurent Thomann
+ PDF Chat Global wellposedness for the energy-critical Zakharov system below the ground state 2021 Timothy Candy
Sebastian Herr
Kenji Nakanishi
+ PDF Chat Global Well-Posedness of the Derivative Nonlinear Schroedinger Equations on T 2010 Yin Yin Su Win