Type: Article
Publication Date: 2013-06-21
Citations: 222
DOI: https://doi.org/10.1109/tsp.2013.2270464
In an increasing number of applications, it is of interest to recover an approximately low-rank data matrix from noisy observations. This paper develops an unbiased risk estimate---holding in a Gaussian model---for any spectral estimator obeying some mild regularity assumptions. In particular, we give an unbiased risk estimate formula for singular value thresholding (SVT), a popular estimation strategy which applies a soft-thresholding rule to the singular values of the noisy observations. Among other things, our formulas offer a principled and automated way of selecting regularization parameters in a variety of problems. In particular, we demonstrate the utility of the unbiased risk estimation for SVT-based denoising of real clinical cardiac MRI series data. We also give new results concerning the differentiability of certain matrix-valued functions.