Sharp A 2 inequality for Haar shift operators

Type: Article

Publication Date: 2009-12-26

Citations: 106

DOI: https://doi.org/10.1007/s00208-009-0473-y

Locations

  • Mathematische Annalen - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ Weak-type estimates for Haar shift operators: Sharp power on the A(p) characteristic 2009 Michael T. Lacey
Tuomas Hytönen
Armen Vagharshakyan
María Carmen Reguera
+ A remark on Haar functions 1974 Jyun Ishii
+ Sharp $ A_2$ Inequality for Haar Shift Operators 2009 Michael T. Lacey
Stefanie Petermichl
María Carmen Reguera
+ An operator Karamata inequality 2014 Mohammad Sal Moslehian
Marek Niezgoda
Rajna Rajić
+ PDF Chat Remarks on Haar measure 1958 Shigeya Maruyama
+ A new proof of a result about Hankel operators 1982 David R. Richman
+ A sharp extrapolation theorem for operators 2000 Е. И. Бережной
A. A. Perfil'ev
+ Convergence Properties of the Aluthge Sequence of Shift Operators 2012 Kevin Rion
+ On the operator Aczél inequality and its reverse 2020 Shigeru Furuichi
M. R. Jabbarzadeh
Venus Kaleibary
+ A Two-Weight Inequality for Essentially Well Localized Operators 2016 Philip Benge
+ A generalization of the Hahn-Banach theorem 1982 Norimichi Hirano
Hidetoshi Komiya
Wataru Takahashi
+ PDF Chat A Note on Haar Measure 1955 Harry F. Davis
+ Shift Operators 1973 Heydar Radjavi
Peter Rosenthal
+ Shift Operators 2019 Svetlin G. Georgiev
+ A small excursion on the Haar measure on Op 2018 Toni Duras
Thomas Holgersson
+ Liftings for Haar measure on {0,1} k 1991 Maxim R. Burke
Winfried Just
+ A Strong Converse Inequality for Gamma-Type Operators 1999 José A. Adell
C. Sangüesa
+ A trace inequality for operators 1990 Dinesh Singh
+ Differentiation and Haar-null sets 2024
+ A simple proof of the $A_2$ conjecture 2012 Andrei K. Lerner