Strong uniform distributions and ergodic theorems

Type: Article

Publication Date: 1975-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1975-0361000-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be locally compact <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-compact abelian groups, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a mapping from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace mu Subscript n Baseline right-brace Subscript n equals 1 Superscript normal infinity"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {\mu _n}\} _{n = 1}^\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a sequence of measures on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We define the notions: “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a uniform distribution with respect ot <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace mu Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {\mu _n}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>” and “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a strong uniform distribution". We give a number of examples of these notions and derive some general individual ergodic theorems for measure-preserving transformations with discrete spectrum.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Ergodic properties that lift to compact group extensions 1988 E. Arthur Robinson
+ PDF Chat Uniform convergence of ergodic limits and approximate solutions 1992 Sen-Yen Shaw
+ Strongly ergodic actions have local spectral gap 2018 Amine Marrakchi
+ Generic stationary measures and actions 2015 Lewis Bowen
Yair Hartman
Omer Tamuz
+ PDF Chat Weak containment and weak Frobenius reciprocity 1976 Elliot C. Gootman
+ PDF Chat Ergodic theorems of weak mixing type 1976 Lee Jones
Michael Lin
+ PDF Chat On the uniform ergodic theorem. II 1974 Michael Lin
+ Diffuse invariant random subgroups 2022 Simon Thomas
+ PDF Chat On the dominated ergodic theorem in 𝐿₂ space 1974 M. A. Akcoglu
Louis Sucheston
+ PDF Chat On the uniform ergodic theorem of Lin 1981 Stuart P. Lloyd
+ PDF Chat Ergodic undefinability in set theory and recursion theory 1981 Daniele Mundici
+ On 𝑑-parameter pointwise ergodic theorems in 𝐿₁ 1995 Shigeru Hasegawa
Ryōtarō Satō
+ PDF Chat Ergodic sequences in the Fourier-Stieltjes algebra and measure algebra of a locally compact group 1999 Anthony Lau
Viktor Losert
+ PDF Chat Upper bounds for ergodic sums of infinite measure preserving transformations 1990 Jon Aaronson
Manfred Denker
+ PDF Chat Continuous ergodic measures on 𝑅^{∞} have disjoint powers 1977 Marek Kanter
+ Invariant random subgroups and action versus representation maximality 2016 Peter Burton
Alexander S. Kechris
+ PDF Chat Processes disjoint from weak mixing 1989 Shmuel Glasner
Bernard Weiss
+ PDF Chat Π₁¹ sets of unbounded Loeb measure 1996 Boško Živaljević
+ PDF Chat Limit theorems for Markov processes on topological groups 1966 S. R. Foguel
+ PDF Chat Local ergodicity of linear contractions on 𝐶(𝑋) 1985 Wojciech Bartoszek

Works That Cite This (0)

Action Title Year Authors