Deciding Positivity of Littlewood--Richardson Coefficients

Type: Article

Publication Date: 2013-01-01

Citations: 32

DOI: https://doi.org/10.1137/120892532

Abstract

Starting with Knutson and Tao's hive model [J. Amer. Math. Soc., 12 (1999), pp. 1055--1090] we characterize the Littlewood--Richardson coefficient ${c_{\lambda,\mu}^{\nu}}$ of given partitions $\lambda,\mu,\nu\in\mathbb{N}^n$ as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding ${c_{\lambda,\mu}^{\nu}} >0$. This algorithm is easy to state and takes $\mathcal{O}(n^3\log\nu_1)$ arithmetic operations and comparisons. We further show that the capacity achieving hive flows can be seen as the vertices of a connected graph, which leads to new structural insights into Littlewood--Richardson coefficients.

Locations

  • SIAM Journal on Discrete Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Deciding Positivity of Littlewood-Richardson Coefficients 2012 Peter Bürgisser
Christian Ikenmeyer
+ Deciding Positivity of Littlewood-Richardson Coefficients 2012 Peter Bürgisser
Christian Ikenmeyer
+ Small Littlewood-Richardson coefficients 2012 Christian Ikenmeyer
+ Small Littlewood-Richardson coefficients 2012 Christian Ikenmeyer
+ PDF Chat A max-flow algorithm for positivity of Littlewood-Richardson coefficients 2009 Peter Bürgisser
Christian Ikenmeyer
+ PDF Chat The Symmetry of Littlewood--Richardson Coefficients: A New Hive Model Involutory Bijection 2018 Itaru Terada
Ronald C. King
Olga Azenhas
+ On the complexity of computing Kronecker coecients and deciding positivity of Littlewood-Richardson coecients 2008 Christian Ikenmeyer
Friedrich Eisenbrand
+ PDF Chat On vanishing of Kronecker coefficients 2017 Christian Ikenmeyer
Ketan Mulmuley
Michael Walter
+ PDF Chat The honeycomb model of $GL_n(\mathbb C)$ tensor products I: Proof of the saturation conjecture 1999 Allen Knutson
Terence Tao
+ Lower and Upper Bounds for Nonzero Littlewood-Richardson Coefficients 2022 Müge Taşkın
R. Bedii Gümüş
+ Ramsey-Paris-Harrington numbers for graphs 1985 George Mills
+ Hives and Gelfand-Tsetlin patterns 2012 Sangjib Kim
+ A hive model determination of multiplicity-free Schur function products and skew Schur functions 2009 Donna Q. J. Dou
Robert L. Tang
Ronald C. King
+ None 2006 Béla Bollobás
Graham Brightwell
+ Large cardinals at the brink 2023 W. Hugh Woodin
+ On the largest Kronecker and Littlewood--Richardson coefficients 2018 Igor Pak
Greta Panova
Damir Yeliussizov
+ Numerical evidence for the Birch Swinnerton-Dyer Conjecture 2011 J. E. Cremona
+ PDF Chat None 2023
+ On the largest Kronecker and Littlewood–Richardson coefficients 2019 Igor Pak
Greta Panova
Damir Yeliussizov
+ Capacity dimension of the Brjuno set 2015 Azimbay Sadullaev
Karim Rakhimov