Directed sets and cofinal types

Type: Article

Publication Date: 1985-01-01

Citations: 76

DOI: https://doi.org/10.1090/s0002-9947-1985-0792822-9

Abstract

We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 comma omega comma omega 1 comma omega times omega 1"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ω<!-- ω --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ω<!-- ω --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">1,\omega ,{\omega _1},\omega \times {\omega _1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket omega 1 right-bracket Superscript greater-than omega"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ω<!-- ω --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>&gt;</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{[{\omega _1}]^{ &gt; \omega }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the only cofinal types of directed sets of size <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal alef 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">ℵ<!-- ℵ --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\aleph _1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but that there exist many cofinal types of directed sets of size continuum.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On products of Δ-sets 2024 Rodrigo Carvalho
Vinicius de Oliveira Rodrigues
+ PDF Chat Rich sets 1980 C. T. Chong
+ PDF Chat Δ-sets 1993 R. W. Knight
+ PDF Chat Duality of restriction and induction for 𝐶*-coactions 1997 S. Kaliszewski
John Quigg
Iain Raeburn
+ On CON(𝔡_{𝜆}&gt; cov_{𝜆}(meagre)) 2019 Saharon Shelah
+ Cofinal maximal chains in the Turing degrees 2014 Wei Wang
Liuzhen Wu
Liang Yu
+ PDF Chat Relative to any nonrecursive set 1998 Theodore A. Slaman
+ ℬ-free sets and dynamics 2017 Aurelia Dymek
Stanisław Kasjan
Joanna Kułaga-Przymus
Mariusz Lemańczyk
+ PDF Chat Π₂¹ sets and Π₂¹ singletons 1975 Leo Harrington
+ PDF Chat Convergent free sequences in compact spaces 1992 Istvan Juhász
Zoltán Szentmiklóssy
+ Cardinals 𝑚 such that 2𝑚=𝑚 1970 J. D. Halpern
Paul Howard
+ PDF Chat On the structure of sets of uniqueness 1987 Russell Lyons
+ PDF Chat Short chains and regular components 1993 Idun Reiten
Andrzej Skowroński
Sverre O. Smalø
+ Rules and reals 1999 Martin Goldstern
Menachem Kojman
+ PDF Chat 𝛽-recursion theory 1979 Sy D. Friedman
+ PDF Chat Recursiveness in 𝑃¹₁ paths through 𝒪 1976 Harvey Friedman
+ PDF Chat Automorphisms of the lattice of recursively enumerable sets: promptly simple sets 1992 Peter Cholak
Rodney G. Downey
Michael Stob
+ PDF Chat Forbidden intersections 1987 Péter Frankl
Vojtěch Rödl
+ PDF Chat Countable metacompactness in Ψ-spaces 1994 Paul J. Szeptycki
+ PDF Chat On 𝑘-free sequences of integers 1972 Samuel S. Wagstaff