Type: Article
Publication Date: 1975-01-01
Citations: 1
DOI: https://doi.org/10.1090/s0002-9947-1975-0389891-0
This paper is concerned, in the first place, with the conditions to be imposed on an ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the power series ring in one indeterminate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-bracket left-bracket x right-bracket right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A[[x]]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> noetherian) in order that the analytic extension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B equals upper A left-bracket left-bracket x right-bracket right-bracket slash upper I"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">B = A[[x]]/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a flat <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module. Also the relationship between the projectivity and finiteness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is found when the content of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (the ideal of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by the coefficients of all power series in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) equals <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A generalization of this result to the power series ring in any finite number of indeterminates is obtained when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is local, noetherian of Krull <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="dimension greater-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mi>dim</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\dim \geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and under certain restrictions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for the global case but only for domains. Finally, a contribution to the problem of the finiteness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-bracket left-bracket x right-bracket right-bracket slash upper I"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A[[x]]/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a flat analytic extension is given for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a local ring, not necessarily noetherian.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | The preparation theorem and the freeness of $A[[X]]/I$ | 1976 |
S. H. Cox |