Flat analytic extensions

Type: Article

Publication Date: 1975-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9947-1975-0389891-0

Abstract

This paper is concerned, in the first place, with the conditions to be imposed on an ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the power series ring in one indeterminate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-bracket left-bracket x right-bracket right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A[[x]]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> noetherian) in order that the analytic extension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B equals upper A left-bracket left-bracket x right-bracket right-bracket slash upper I"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">B = A[[x]]/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a flat <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module. Also the relationship between the projectivity and finiteness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is found when the content of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (the ideal of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by the coefficients of all power series in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) equals <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A generalization of this result to the power series ring in any finite number of indeterminates is obtained when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is local, noetherian of Krull <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="dimension greater-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mi>dim</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\dim \geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and under certain restrictions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for the global case but only for domains. Finally, a contribution to the problem of the finiteness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-bracket left-bracket x right-bracket right-bracket slash upper I"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A[[x]]/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a flat analytic extension is given for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a local ring, not necessarily noetherian.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Algebraic extensions of power series rings 1981 Jimmy T. Arnold
+ Analytic extensions of algebraic isomorphisms 2015 S. Kaliman
+ PDF Chat Flat Analytic Extensions 1975 Ana M. D. Viola-Prioli
+ PDF Chat Extensions of primes, flatness, and intersection flatness 2021 Melvin Hochster
Jack Jeffries
+ PDF Chat Singularities of generic linkage via Frobenius powers 2023 Jiamin Li
+ PDF Chat The extension of regular holomorphic maps 1974 H. L. Royden
+ PDF Chat Normally flat deformations 1977 Bruce M. Bennett
+ Hyperbolicity cones and imaginary projections 2018 Thorsten Jörgens
Thorsten Theobald
+ PDF Chat On analytic irreducibility at ∞ of a pencil of curves 1974 T. T. Moh
+ PDF Chat On purely inseparable extensions 𝐾[𝑋,𝑌]/𝐾[𝑋’,𝑌’] and their generators 1996 Daniel Daigle
+ PDF Chat Parametrizations of analytic varieties 1973 Joseph Becker
+ Finite determinacy and approximation of flat maps 2022 Aftab Patel
+ Rationality of equivariant Hilbert series and asymptotic properties 2021 Uwe Nagel
+ PDF Chat Free derivation modules and a criterion for regularity 1973 Selmer Moen
+ On the irreducibility of locally analytic principal series representations 2010 Sascha Orlik
Matthias Strauch
+ The ideal structure of some analytic crossed products 1999 Miron E. Shpigel
+ PDF Chat Polynomial flows on 𝐶ⁿ 1990 Brian A. Coomes
+ Stable algebras of entire functions 2008 Dan Coman
Evgeny A. Poletsky
+ Multidimensional analogues of Bohr’s theorem on power series 1999 Lev Aizenberg
+ PDF Chat A brief proof of Jacobian hypothesis implies flatness 1990 Masayoshi Miyanishi
Lorenzo Robbiano
Stuart Sui Sheng Wang

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat The preparation theorem and the freeness of $A[[X]]/I$ 1976 S. H. Cox