Conflicting symmetries in topologically ordered surface states of three-dimensional bosonic symmetry protected topological phases

Type: Article

Publication Date: 2014-06-03

Citations: 61

DOI: https://doi.org/10.1103/physrevb.89.235103

Abstract

We study the ${\mathbb{Z}}_{2}$ topologically ordered surface state of three-dimensional bosonic SPT phases with the discrete symmetries ${\mathrm{G}}_{1}\ifmmode\times\else\texttimes\fi{}{\mathrm{G}}_{2}$. It has been argued that the topologically ordered state cannot be realized on a purely two-dimensional lattice model. We carefully examine the statement and show that the surface state should break ${\mathrm{G}}_{2}$ if the symmetry ${\mathrm{G}}_{1}$ is gauged on the surface. This manifests the conflict of the symmetry ${\mathrm{G}}_{1}$ and ${\mathrm{G}}_{2}$ on the surface of the three-dimensional SPT phase. Given that there is no such phenomena in the purely two-dimensional model, it signals that the symmetries are encoded anomalously on the surface of the three-dimensional SPT phases and that the surface state can never be realized on the purely two-dimensional models.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Classification and surface anomaly of glide symmetry protected topological phases in three dimensions 2017 Fuyan Lu
Bowen Shi
Yuan-Ming Lu
+ PDF Chat Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological order 2014 F. J. Burnell
Xie Chen
Lukasz Fidkowski
Ashvin Vishwanath
+ Surface Topological Order and a new 't Hooft Anomaly of Interaction Enabled 3+1D Fermion SPTs 2018 Lukasz Fidkowski
Ashvin Vishwanath
Max A. Metlitski
+ PDF Chat (3+1)d boundary topological order of (4+1)d fermionic SPT state 2024 Meng Cheng
Juven Wang
Xinping Yang
+ PDF Chat Symmetry enforced non-Abelian topological order at the surface of a topological insulator 2014 Xie Chen
Lukasz Fidkowski
Ashvin Vishwanath
+ PDF Chat Discrete spin structures and commuting projector models for two-dimensional fermionic symmetry-protected topological phases 2016 Nicolas Tarantino
Lukasz Fidkowski
+ PDF Chat Anomaly indicators and bulk-boundary correspondences for three-dimensional interacting topological crystalline phases with mirror and continuous symmetries 2021 Shang-Qiang Ning
Bin-Bin Mao
Zhengqiao Li
Chenjie Wang
+ PDF Chat Symmetry-Protected Topological Phases of Quantum Matter 2015 T. Senthil
+ Topological Order and Symmetry Anomaly on the Surface of Topological Crystalline Insulators 2017 Sungjoon Hong
Liang Fu
+ PDF Chat Surface field theories of point group symmetry protected topological phases 2018 Sheng-Jie Huang
Michael Hermele
+ PDF Chat Topological crystalline insulator states in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>As</mml:mi></mml:mrow></mml:math> family 2018 Xiaoting Zhou
Chuang‐Han Hsu
Tay‐Rong Chang
Hung‐Ju Tien
Qiong Ma
Pablo Jarillo‐Herrero
Nuh Gedik
Arun Bansil
Vitor M. Pereira
Su-Yang Xu
+ Bosonic symmetry-protected topological phases with charge and spin symmetries: response theory and dynamical gauge theory in 2D, 3D, and the surface of 3D 2013 Peng Ye
Juven Wang
+ PDF Chat Line defects in three-dimensional symmetry-protected topological phases 2014 Zhen Bi
Alex Rasmussen
Cenke Xu
+ Anomalies of Non-Invertible Symmetries in (3+1)d 2023 Clay CĂłrdova
Po-Shen Hsin
Carolyn Zhang
+ Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model 2013 Lukasz Fidkowski
Xie Chen
Ashvin Vishwanath
+ Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model 2013 Lukasz Fidkowski
Xie Chen
Ashvin Vishwanath
+ PDF Chat Rotation symmetry-protected topological phases of fermions 2022 Meng Cheng
Chenjie Wang
+ PDF Chat Classification and construction of higher-order symmetry-protected topological phases of interacting bosons 2020 Alex Rasmussen
Yuan-Ming Lu
+ PDF Chat Symmetry Indicators and Anomalous Surface States of Topological Crystalline Insulators 2018 Eslam Khalaf
Hoi Chun Po
Ashvin Vishwanath
Haruki Watanabe
+ Solvable lattice model for (2+1)D bosonic topological insulator 2020 Yusuke Horinouchi

Works That Cite This (55)

Action Title Year Authors
+ PDF Chat Bosonic anomalies, induced fractional quantum numbers, and degenerate zero modes: The anomalous edge physics of symmetry-protected topological states 2015 Juven Wang
Luiz H. Santos
Xiao-Gang Wen
+ PDF Chat Symmetry fractionalization and anomaly detection in three-dimensional topological phases 2016 Xie Chen
Michael Hermele
+ PDF Chat Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs 2022 Srivatsa Tata
Ryohei Kobayashi
Daniel Bulmash
Maissam Barkeshli
+ PDF Chat Three-dimensional anomalous twisted gauge theories with global symmetry: Implications for quantum spin liquids 2018 Peng Ye
+ PDF Chat Deconfinement and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">C</mml:mi><mml:mi mathvariant="script">P</mml:mi></mml:mrow></mml:math> breaking at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>θ</mml:mi><mml:mo>=</mml:mo><mml:mi>π</mml:mi></mml:math> in Yang-Mills theories and a novel phase for SU(2) 2020 Shi Chen
Kenji Fukushima
HiromichĂ­ Nishimura
Yuya Tanizaki
+ PDF Chat Exactly solvable models for symmetry-enriched topological phases 2017 Meng Cheng
Zheng‐Cheng Gu
Shenghan Jiang
Yang Qi
+ PDF Chat Bulk-boundary correspondence in (3+1)-dimensional topological phases 2016 Xiao Chen
Apoorv Tiwari
Shinsei Ryu
+ PDF Chat Varieties and properties of central-branch Wilson fermions 2020 Tatsuhiro Misumi
Jun Yumoto
+ PDF Chat Sigma-model analysis of SU(3) antiferromagnetic spins on the triangular lattice 2021 Itsuki Takahashi
Yuya Tanizaki
+ PDF Chat Time-Reversal Symmetric<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>Quantum Spin Liquids 2016 Chong Wang
T. Senthil