On “almost global” solutions to quasilinear wave equations in three space dimensions

Type: Article

Publication Date: 1983-05-01

Citations: 44

DOI: https://doi.org/10.1002/cpa.3160360304

Locations

  • Communications on Pure and Applied Mathematics - View

Similar Works

Action Title Year Authors
+ Almost global existence to nonlinear wave equations in three space dimensions 1984 Franklin John
Sergiù Klainerman
+ On almost global existence for nonrelativistic wave equations in 3D 1996 Sergiù Klainerman
Thomas C. Sideris
+ A note on quasilinear wave equations in two space dimensions II: Almost global existence of classical solutions 2016 Weimin Peng
Dongbing Zha
+ On Conditions of Global Existence for Systems of Quasilinear Wave Equations in Three Space Dimensions 1998 和義 横山
+ On Conditions of Global Existence for Systems of Quasilinear Wave Equations in Three Space Dimensions 1998 Kazuyoshi Yokoyama
+ Global existence and blow-up of the classical solutions to systems of semilinear wave equations in three space dimensions 2000 Masahito Ohta
Hideo Kubo
+ Global solutions of nonlinear wave equations 1992 Hans Lindblad
+ Blow‐up for quasi‐linear wave equations in three space dimensions 1981 Fritz John
+ On Global Solvability of One-Dimensional Quasilinear Wave Equations 2020 Dmitry Vasilievich Tunitsky
+ PDF Chat ON A STRONGLY DAMPED QUASILINEAR WAVE EQUATION 1986 D. D. Hai
+ Almost global existence for quasilinear wave equations in three space dimensions 2003 M. Keel
Hart F. Smith
Christopher D. Sogge
+ On a quasilinear wave equation with memory 1991 Ricardo Torrejón
Jiongmin Yong
+ On the critical exponent p of the 3D quasilinear wave equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mo linebreak="badbreak" linebreakstyle="after">−</mml:mo><mml:mo stretchy="true" maxsize="2.4ex" minsize="2.4ex">(</mml:mo><mml:mn>1</mml:mn><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mo>∂</mml:mo></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub… 2023 Bingbing Ding
Lu Yu
Huicheng Yin
+ The Blowup Mechanism of Small Data Solutions for the Quasilinear Wave Equations in Three Space Dimensions 2001 Hui Cheng Yin
+ The Blowup Mechanism of Small Data Solutions for the Quasilinear Wave Equations in Three Space Dimensions 2001 Hui Cheng Yin
+ Global solutions to quasilinear wave-Klein-Gordon systems in two space dimensions 2024 Qian Zhang
+ The blowup mechanism for 3-D quasilinear wave equations with small data 2000 Huicheng Yin
+ Global and almost global existence for general quasilinear wave equations in two space dimensions 2018 Dongbing Zha
+ Erratum to: Blow-Up of Solutions of Nonlinear Wave Equations in Three Space Dimensions 1985 Fritz John
+ Global solutions of quasilinear wave equations 2005 Hans Lindblad

Works That Cite This (43)

Action Title Year Authors
+ PDF Chat Strichartz estimates and maximal operators for the wave equation in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> 2013 Marius Beceanu
Michael Goldberg
+ PDF Chat Lifespan of classical solutions to quasilinear wave equations outside of a star-shaped obstacle in four space dimensions 2014 Dongbing Zha
Yi Zhou
+ PDF Chat Almost Global Existence for the Prandtl Boundary Layer Equations 2015 Mihaela Ignatova
Vlad Vicol
+ Almost Global Solutions to Hamiltonian Derivative Nonlinear Schrödinger Equations on the Circle 2019 Jing Zhang
+ PDF Chat Small-data shock formation in solutions to 3D quasilinear wave equations: An overview 2016 Gustav Holzegel
Sergiù Klainerman
Jared Speck
Willie Wai-Yeung Wong
+ PDF Chat Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves 2016 Jared Speck
Gustav Holzegel
Jonathan Luk
Willie Wai-Yeung Wong
+ PDF Chat Singularities and horizons in the collisions of gravitational waves 1989 Ulvi Yurtsever
+ Long time existence of solutions for ∂2∂T2u(x,t) + ∂∂Tα(u(x,t)) = ∂2∂X2β(u(x,t)) 1991 Frederick Bloom
+ Global solutions for nonlinear wave equations with localized dissipations in exterior domains 2012 Makoto Nakamura
+ Almost global existence in the plane wave- nonlinear dielectric interaction problem 1988 F. Bloom