Stability of Godunov’s method for a class of 2×2 systems of conservation laws

Type: Article

Publication Date: 1985-01-01

Citations: 42

DOI: https://doi.org/10.1090/s0002-9947-1985-0773050-x

Abstract

We prove stability and convergence of the Godunov scheme for a special class of genuinely nonlinear <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 times 2"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">2 \times 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> systems of conservation laws. The class of systems, which was identified and studied by Temple, is a subset of the class of systems for which the shock wave curves and rarefaction wave curves coincide. None of the equations of gas dynamics fall into this class, but equations of this type do arise, for example, in the study of multicomponent chromatography. To our knowledge this is the first time that a numerical method other than the random choice method of Glimm has been shown to be stable in the variation norm for a coupled system of nonlinear conservation laws. This implies that subsequences converge to weak solutions of the Cauchy problem, although convergence for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 times 2"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">2 \times 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> systems has been proved by DiPerna using the more abstract methods of compensated compactness.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ 𝐿₁ stability for 2×2 systems of hyperbolic conservation laws 1999 Tai-Ping Liu
Tong Yang
+ PDF Chat Weak stability in the global 𝐿¹-norm for systems of hyperbolic conservation laws 1990 Blake Temple
+ PDF Chat Systems of conservation laws with invariant submanifolds 1983 Blake Temple
+ Stability of systems of viscous conservation laws 1998 Gunilla Kreiss
Heinz‐Otto Kreiss
+ PDF Chat A counter‐example concerning regularity properties for systems of conservation laws 2015 Laura Caravenna
Laura V. Spinolo
+ Mini-Workshop: Innovative Trends in the Numerical Analysis and Simulation of Kinetic Equations 2019 José A. Carrillo
Martin Frank
Jingwei Hu
Lorenzo Pareschi
+ ON THE CONVERGENCE OF NUMERICAL SCHEMES FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 2019 Siddhartha Mishra
+ ℒ1 stability of shock waves in scalar viscous conservation laws 1998 Heinrich Freistühler
Denis Serre
+ A case study of global stability of strong rarefaction waves for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mn>2</mml:mn></mml:math> hyperbolic conservation laws with artificial viscosity 2006 Ran Duan
Xuan Ma
Huijiang Zhao
+ Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation 2015 Caroline Bauzet
Julia Charrier
Thierry Gallouët
+ CNA Working Group, Fall 2008 Systems of Conservation Laws and Viscosity Solutions 2008 Marta Lewicka
+ Numerical Stability and the Second Law 2008
+ Multi-dimensional Systems of Conservation Laws: An Introductory Lecture 2013 Denis Serre
+ PDF Chat Systems of Conservation Laws with Invariant Submanifolds 1983 Blake Temple
+ A system of two conservation laws with flux conditions and small viscosity 2014 K. T. Joseph
+ PDF Chat Numerical Methods for Conservation Laws. 1991 Chi‐Wang Shu
Randall J. LeVeque
+ ?1 stability of shock waves in scalar viscous conservation laws 1998 Heinrich Freist�hler
Denis Serre
+ PDF Chat Stability of 2D incompressible flows in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">R</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> 2008 Piotr B. Mucha
+ PDF Chat Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions 1990 Xin Zhou
+ Systems of Conservation Laws 1 1999 Denis Serre