Regression based D-optimality experimental design for sparse kernel density estimation

Type: Article

Publication Date: 2009-11-19

Citations: 11

DOI: https://doi.org/10.1016/j.neucom.2009.11.002

Locations

  • ePrints Soton (University of Southampton) - View - PDF
  • Neurocomputing - View

Similar Works

Action Title Year Authors
+ Sparse data modelling using combined locally regularized orthogonal least squares and D-optimality design 2002 Sheng Chen
Xia Hong
C.J. Harris
+ A Forward-Constrained Regression Algorithm for Sparse Kernel Density Estimation 2008 Xia Hong
Sheng Chen
C.J. Harris
+ PDF Chat Sparse density estimator with tunable kernels 2015 Xia Hong
Sheng Chen
Victor M. Becerra
+ PDF Chat Efficient kernel-based variable selection with sparsistency 2020 Xin He
Junhui Wang
Shaogao Lv
+ Scalable kernel-based variable selection with sparsistency 2018 Xin He
Junhui Wang
Shaogao Lv
+ Sparse Modeling Using Orthogonal Forward Regression With PRESS Statistic and Regularization 2004 Sheng Chen
Xia Hong
C.J. Harris
Paul Sharkey
+ PDF Chat Kernel density estimation by stagewise algorithm with a simple dictionary 2022 Kiheiji Nishida
Kanta Naito
+ Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization 2008 Xun-Fu Yin
Zhifeng Hao
+ Numerical characterization of support recovery in sparse regression with correlated design 2022 Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+ Regularization of the Kernel Matrix via Covariance Matrix Shrinkage Estimation 2017 Tomer Lancewicki
+ Kernel Density Estimation by Stagewise Algorithm with a Simple Dictionary 2021 Kiheiji Nishida
Kanta Naito
+ A Sparse Kernel Density Estimation Algorithm Using Forward Constrained Regression 2007 Xia Hong
Sheng Chen
C.J. Harris
+ Doubly Sparse Bayesian Kernel Logistic Regression 2018 A. Kojima
Toshihisa Tanaka
+ An Exact Solution Path Algorithm for SLOPE and Quasi-Spherical OSCAR 2020 Shunichi Nomura
+ PDF Chat Flexible Variable Selection for Recovering Sparsity in Nonadditive Nonparametric Models 2016 Zaili Fang
Inyoung Kim
Patrick Schaumont
+ Significance testing for variable selection in high-dimension 2015 Jean-Michel Bécu
Christophe Ambroise
Yves Grandvalet
Cyril Dalmasso
+ Non-uniform Nyström approximation for sparse kernel regression: Theoretical analysis and experimental evaluation 2022 Qian Zhang
Wei Shi
Steven C. H. Hoi
Zenglin Xu
+ Numerical Characterization of Support Recovery in Sparse Regression with Correlated Design 2021 Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+ PDF Chat Sparsity Oriented Importance Learning for High-Dimensional Linear Regression 2017 Chenglong Ye
Yi Yang
Yuhong Yang
+ PDF Chat Double sparsity kernel learning with automatic variable selection and data extraction 2018 Jingxiang Chen
Chong Zhang
Michael R. Kosorok
Yufeng Liu

Works That Cite This (0)

Action Title Year Authors