Bounds for zeros of some special functions

Type: Article

Publication Date: 1970-05-01

Citations: 35

DOI: https://doi.org/10.1090/s0002-9939-1970-0255909-x

Abstract

For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-over-equals 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≧</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="b Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{b_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{c_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be zeros (ordered by increasing values) of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="v left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">v(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, which are non-trivial solutions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u plus p left-parenthesis x right-parenthesis u equals 0"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">u + p(x)u = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="v plus q left-parenthesis x right-parenthesis v equals 0"> <mml:semantics> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>v</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">v + q(x)v = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with continuous <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">q(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="b Subscript n Baseline minus c Subscript n Baseline right-arrow 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>−</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{b_n} - {c_n} \to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n right-arrow normal infinity comma p left-parenthesis x right-parenthesis greater-than-over-equals q left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thickmathspace"/> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≧</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">n \to \infty ,\;p(x) \geqq q(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">q(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nonincreasing, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="b Subscript n Baseline greater-than-over-equals c Subscript n"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>≧</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{b_n} \geqq {c_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-over-equals 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≧</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Inequalities related to asymptotic expansions are obtained for the negative zeros <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{a_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Airy function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A i left-parenthesis z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>i</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Ai(z)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the zeros <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j Subscript v comma n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>j</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>v</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{j_{v,n}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Bessel function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript v Baseline left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>v</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_v}(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Bounds for Zeros of Some Special Functions 1970 Herbert W. Hethcote
+ PDF Chat Lower Bounds for the Zeros of Bessel Functions 1977 Roger C. McCann
+ ASYMPTOTIC BOUNDS FOR ZEROS OF SPECIAL FUNCTIONS 1969 Herbert W. Hethcote
+ Inequalities and Approximations for Zeros of Bessel Functions of Small Order 1983 Andrea Laforgia
Martin E. Muldoon
+ Lower bounds for the zeros of analytic functions 1977 E.K. Ifantis
C. B. Kouris
+ On the zeros of derivatives of Bessel functions 2024 Dimitris A. Frantzis
Chrysi G. Kokologiannaki
Eugenia N. Petropoulou
+ BOUNDS AND INEQUALITIES FOR THE ZEROS OF BESSEL FUNCTIONS 1997 Shigemi Ohkohchi
+ Monotonicity properties of zeros of generalized Airy functions 1988 Andrea Laforgia
Martin E. Muldoon
+ A LOWER BOUND FOR THE ZEROS OF THE BESSEL FUNCTIONS 1994 Árpád Elbert
Andrea Laforgia
+ “Best Possible” Upper and Lower Bounds for the Zeros of the Bessel Function <i>J</i><sub><i>v</i></sub>(<i>x</i>) 2015 C.K. Qu
R. Wong
+ Bounds for Zeros of Entire Functions 2009
+ Bounds for Zeros of Entire Functions 2007 M. I. Gil’
+ Bounds for Zeros of Entire Functions 2009
+ Asymptotics and bounds for the zeros of Laguerre polynomials: a survey 2002 Luigi Gatteschi
+ ASYMPTOTIC FORMULAS FOR THE ZEROS OF A CLASS OF ENTIRE FUNCTIONS 1968 V. B. Lidskiĭ
V A Sadovničiĭ
+ Inequalities for the Zeros of Bessel Functions 1977 Roger C. McCann
+ INEQUALITIES FOR THE ZEROS OF BESSEL FUNCTIONS 1977 Roger C. McCann
+ Zeros of derivatives of Bessel and Struve functions 2016 Árpád Baricz
Chrysi G. Kokologiannaki
Tibor K. Pogány
+ Some recent results on the zeros of Bessel functions and orthogonal polynomials 2001 Á. Elbert
+ Inequalities for the Zeros of the Airy Functions 1991 Giovanna Pittaluga
Laura Sacripante