On the integral dependence of power series rings

Type: Article

Publication Date: 1991-01-01

Citations: 0

DOI: https://doi.org/10.1080/00927879108824282

Abstract

We prove the following results: (1) Let R ⊂ S be two commutative rings. Suppose that dim R = 0.If f(X) ∈ S[[X]]is integral over R[[X]], then every coefficient of f(X) is integral over R. (2) Let dim R ≥ 1. There exists a ring S containing R and a power series f(X) ∈ S[[X]]such that f(X) is integral over R[[X]], but not all coefficients of f(X) are integral over R. (3) Let k ⊂ R. Suppose that R is algebraic over the field k. Then R[[X]] is integral over k[[X]] if and only if the nilradical of R is nilpotent and the separable degree and the inseparable exponent of R red over k are finite.

Locations

  • NTUR (臺灣機構典藏) - View - PDF
  • Communications in Algebra - View

Similar Works

Action Title Year Authors
+ Integral dependence in power series rings 1969 Robert Gilmer
+ PDF Chat On the Integral Dependence, the Henselian Property in Power Series Rings 1976 Ryûki Matsuda
+ Sur les Relations de Dépendance Intégrale sur un Idéal 2013 Michel Hickel
+ On the integral ideals of R[X] when R is a special principal ideal ring 2020 M. E. Charkani
Brahim Boudine
+ Chapter IV Integral Dependence 1971
+ On the Integral Closure of Polynomial Rings over a Valuation Domain 1998 Hagen Knaf
+ Integral dependence on subrings 2001 Rodney Y. Sharp
+ Some Remarks on Integral Dependence and Noetherian Rings. 1968 Paul Eakin
+ On the Integral Closure of Going-Down Rings 2017 David E. Dobbs
+ On the integral closure of ideals 1998 Alberto Corso
Craig Huneke
Wolmer V. Vasconcelos
+ PDF Chat On the integral closure of ideals 1998 Alberto Corso
Craig Huneke
Wolmer V. Vasconcelos
+ Integral Dependence and the Nullstellensatz 1995 David Eisenbud
+ On maximal ideals and simple integral extension rings 1979 Louis J. Ratliff
+ On integrally closed simple extensions of valuation rings 2017 Anuj Jakhar
Sudesh K. Khanduja
Neeraj Sangwan
+ On the compositum of integral closures of valuation rings 2018 Anuj Jakhar
Sudesh K. Khanduja
Neeraj Sangwan
+ PDF Chat A Note on Quotient Fields of Power Series Rings 1994 Huah Chu
Yi-Chuan Lang
+ PDF Chat The ring of polynomials integral-valued over a finite set of integral elements 2016 Giulio Peruginelli
+ PDF Chat On the semisimplicity of integral representation rings 1970 Janice Rose Zemanek
+ On the integral degree of integral ring extensions 2015 José M. Giral
Liam O’Carroll
Francesc Planas-Vilanova
Bernat Plans
+ On the integral degree of integral ring extensions 2015 José M. Giral
Liam O’Carroll
Francesc Planas-Vilanova
Bernat Plans

Works That Cite This (0)

Action Title Year Authors