Type: Article
Publication Date: 1991-01-01
Citations: 0
DOI: https://doi.org/10.1080/00927879108824282
We prove the following results: (1) Let R ⊂ S be two commutative rings. Suppose that dim R = 0.If f(X) ∈ S[[X]]is integral over R[[X]], then every coefficient of f(X) is integral over R. (2) Let dim R ≥ 1. There exists a ring S containing R and a power series f(X) ∈ S[[X]]such that f(X) is integral over R[[X]], but not all coefficients of f(X) are integral over R. (3) Let k ⊂ R. Suppose that R is algebraic over the field k. Then R[[X]] is integral over k[[X]] if and only if the nilradical of R is nilpotent and the separable degree and the inseparable exponent of R red over k are finite.
Action | Title | Year | Authors |
---|