Random discrete Schrödinger operators from random matrix theory

Type: Article

Publication Date: 2007-01-17

Citations: 12

DOI: https://doi.org/10.1088/1751-8113/40/5/f03

Abstract

We investigate random, discrete Schrödinger operators which arise naturally in the theory of random matrices, and depend parametrically on Dyson's Coulomb gas inverse temperature β. They are similar to the class of 'critical' random Schrödinger operators with random potentials which diminish as . We show that as a function of β they undergo a transition from a regime of (power-law) localized eigenstates with a pure point spectrum for β < 2 to a regime of extended states with a singular continuous spectrum for β ⩾ 2.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal of Physics A Mathematical and Theoretical - View

Similar Works

Action Title Year Authors
+ Random discrete Schrödinger operators from Random Matrix Theory 2005 Jonathan Breuer
Peter J. Forrester
Uzy Smilansky
+ Euclidean random matrices and their applications in physics 2013 Arthur Goetschy
S. E. Skipetrov
+ PDF Chat Random matrices close to Hermitian or unitary: overview of methods and results 2003 Yan V. Fyodorov
H-J Sommers
+ PDF Chat The Scaling Limit of the Critical One-Dimensional Random Schrödinger Operator 2012 Eugene Kritchevski
Benedek Valkó
Bálint Virág
+ Random schrödinger operators 2006 René Carmona
+ Random Schrödinger operators 2008 Margherita Disertori
Werner Kirsch
Abel Klein
Frédéric Klopp
Vincent Rivasseau
+ From power pure point to continuous spectrum in disordered systems 1985 F. Delyon
Barry Simon
Bernard Souillard
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ PDF Chat Eigenvectors of the 1-dimensional critical random Schrödinger operator 2018 Ben Rifkind
Bálint Virág
+ Random Schrodinger Operators (Random Systems and Dynamical Systems) 1981 Shinichi Kotani
+ Random eigenvalues from a stochastic heat equation 2016 Carlos G. Pacheco
+ PDF Chat Spectral properties of random Schrödinger operators with unbounded potentials 1993 Y. Gordon
Vojkan Jakšić
S. A. Molčanov
Barry Simon
+ PDF Chat Random eigenvalues from a stochastic heat equation 2016 Carlos G. Pacheco
+ Random Schrödinger Operators and Random Matrices 2009 Friedrich Götze
Werner Kirsch
Frédéric Klopp
Thomas Kriecherbauer
+ Random Matrices 2020 László Erdős
Friedrich Götze
Alice Guionnet
+ Random eigenvalues from a stochastic heat equation 2016 Carlos G. Pacheco
+ Quantum Chaotic Systems and Random Matrix Theory 2019 Akhilesh Pandey
Avanish Kumar
Sanjay Puri
+ PDF Chat Quantum Chaotic Systems and Random Matrix Theory 2019 Akhilesh Pandey
Avanish Kumar
Sanjay Puri
+ Random matrix theory and the statistical mechanics of disordered systems 1983 Jitendra C. Parikh