Large deviations of Markov chains indexed by random trees

Type: Article

Publication Date: 2005-04-11

Citations: 32

DOI: https://doi.org/10.1016/j.anihpb.2004.09.005

Abstract

Given a finite typed rooted tree T with n vertices, the empirical subtree measure is the uniform measure on the n typed subtrees of T formed by taking all descendants of a single vertex. We prove a large deviation principle in n, with explicit rate function, for the empirical subtree measures of multitype Galton–Watson trees conditioned to have exactly n vertices. In the process, we extend the notions of shift-invariance and specific relative entropy—as typically understood for Markov fields on deterministic graphs such as Zd—to Markov fields on random trees. We also develop single-generation empirical measure large deviation principles for a more general class of random trees including trees sampled uniformly from the set of all trees with n vertices. Etant donné un arbre enraciné T à n sommets, on appelle mesure empirique des sous arbres la mesure uniforme sur les sous arbres obtenus en prenant les descendants des n sommets. On demande notamment un principe explicite de grandes déviations en n pour la mesure empirique des sous arbres des arbres de Galton–Watson multitypes conditionnés à avoir n sommets.

Locations

  • Annales de l Institut Henri Poincaré Probabilités et Statistiques - View
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ A large-deviation theorem for tree-indexed Markov chains 2003 Amir Dembo
Peter Mörters
Scott Sheffield⋆
+ Large Deviations for Random Trees 2008 Yuri Bakhtin
Christine Heitsch
+ LARGE DEVIATION RESULTS FOR MULTITYPE GALTON-WATSON TREES 2010 Kwabena Doku-Amponsah
+ PDF Chat LARGE DEVIATION RESULTS FOR CRITICAL MULTITYPE GALTON-WATSON TREES 2017 Kwabena Doku-Amponsah
+ Large deviations for Gibbs random fields 1981 S K Pogosyan
+ Fringe trees for random trees with given vertex degrees 2023 Gabriel Berzunza Ojeda
Cecilia Holmgren
Svante Janson
+ Universal height and width bounds for random trees 2021 Louigi Addario‐Berry
Anna Brandenberger
Jad Hamdan
Céline Kerriou
+ PDF Chat Large deviations of empirical neighborhood distribution in sparse random graphs 2014 Charles Bordenave
Pietro Caputo
+ On the large deviation rate function for marked sparse random graphs 2023 Kavita Ramanan
Sarath Yasodharan
+ The Markov approximation of the random fields on Cayley trees and a class of small deviation theorems 2003 Wen Liu
Liying Wang
+ Large Deviations for Branching Random Walks 2012 Е. B. Yarovaya
Stanislav Molchanov
+ PDF Chat Large deviations for random walks on Galton–Watson trees: averaging and uncertainty 2002 Amir Dembo
Nina Gantert
Yuval Peres
Ofer Zeitouni
+ PDF Chat Local Large Deviations: A McMillian Theorem for Typed Random Graph Processes 2017 Kwabena Doku-Amponsah
+ Large deviations for empirical measures of Markov chains 1990 A. de Acosta
+ Large deviation principles for countable Markov shifts 2019 Hiroki Takahasi
+ PDF Chat Expected Number of Induced Subtrees Shared by Two Independent Copies of a Random Tree 2023 Boris Pittel
+ PDF Chat Convergence of non-bipartite maps via symmetrization of labeled trees 2021 Louigi Addario‐Berry
Marie Albenque
+ Random trees have height $O(\sqrt{n})$ 2022 Louigi Addario‐Berry
Serte Donderwinkel
+ A note on large deviation probabilities for empirical distribution of branching random walks 2018 Wanlin Shi
+ Large deviations for empirical measures of dense stochastic block graphs 2020 Zheng Wen-hua
Qun Liu