On fixed points of a generalized multidimensional affine recursion

Type: Article

Publication Date: 2012-07-06

Citations: 10

DOI: https://doi.org/10.1007/s00440-012-0439-y

Abstract

Abstract Let G be a multiplicative subsemigroup of the general linear group Gl $${(\mathbb{R}^d)}$$ which consists of matrices with positive entries such that every column and every row contains a strictly positive element. Given a G -valued random matrix A , we consider the following generalized multidimensional affine equation $$R\stackrel{\mathcal{D}}{=} \sum_{i=1}^N A_iR_i+B,$$ where N ≥ 2 is a fixed natural number, A 1 , . . . , A N are independent copies of $${A, B \in \mathbb{R}^d}$$ is a random vector with positive entries, and R 1 , . . . , R N are independent copies of $${R \in \mathbb{R}^d}$$ , which have also positive entries. Moreover, all of them are mutually independent and $${\stackrel{\mathcal{D}}{=}}$$ stands for the equality in distribution. We will show with the aid of spectral theory developed by Guivarc’h and Le Page (Simplicité de spectres de Lyapounov et propriété d’isolation spectrale pour une famille d’opérateurs de transfert sur l’espace projectif. Random Walks and Geometry, Walter de Gruyter GmbH & Co. KG, Berlin, 2004; On matricial renewal theorems and tails of stationary measures for affine stochastic recursions, Preprint, 2011) and Kesten’s renewal theorem (Kesten in Ann Probab 2:355–386, 1974), that under appropriate conditions, there exists χ > 0 such that $${{\mathbb{P}(\{\langle R, u \rangle > t\})\asymp t^{-\chi}}}$$ , as t → ∞, for every unit vector $${u \in \mathbb{S}^{d-1}}$$ with positive entries.

Locations

  • Probability Theory and Related Fields - View - PDF

Similar Works

Action Title Year Authors
+ On fixed points of a generalized multidimensional affine recursion 2011 Mariusz Mirek
+ On fixed points of a generalized multidimensional affine recursion 2011 Mariusz Mirek
+ Homogeneity at Infinity of Stationary Solutions of Multivariate Affine Stochastic Recursions 2013 Yves Guivarc’h
Émile Le Page
+ Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions 2012 Yves Guivarc’h
Émile Le Page
+ On the affine recursion on $\mathbb R_+^d$ 2020 Sara Brofferio
Marc Peigné
Thi Da Cam Pham
+ On the affine recursion on $\mathbb R_+^d$ 2020 Sara Brofferio
Marc Peigné
Thi da Cam Pham
+ Stable laws and spectral gap properties for affine random walks 2011 Zhiqiang Gao
Yves Guivarc’h
Émile Le Page
+ PDF Chat Recurrence of multidimensional affine recursions in the critical case 2024 Richard Aoun
Sara Brofferio
Marc Peigné
+ A recursive distribution equation for the stable tree 2018 Nicholas Chee
Franz Rembart
Matthias Winkel
+ Spectral gap properties and asymptotics of stationary measures for affine random walks 2012 Yves Guivarc’h
Émile Le Page
+ PDF Chat Edge of spiked beta ensembles, stochastic Airy semigroups and reflected Brownian motions 2019 Pierre Yves Gaudreau Lamarre
Mykhaylo Shkolnikov
+ On spectral gap properties and extreme value theory for multivariate affine stochastic recursions 2016 Yves Guivarc’h
Émile Le Page
+ Spectral gap properties and convergence to stable laws for affine random walks on $\mathbb{R}^d$ 2011 Zhiqiang Gao
Yves Guivarc’h
Émile Le Page
+ PDF Chat Convergence to stable laws for a class of multidimensional stochastic recursions 2009 Dariusz Buraczewski
Ewa Damek
Yves Guivarc’h
+ Determinism of Lévy random fields and unitary representations of infinite-dimensional groups 1988 Grigori Olshanski
+ Convergence to stable laws for a class of multidimensional stochastic recursions 2008 Dariusz Buraczewski
Ewa Damek
Yves Guivarc’h
+ Spectral gap properties for linear random walks and Pareto’s asymptotics for affine stochastic recursions 2016 Yves Guivarc’h
Émile Le Page
+ PDF Chat A recursive distributional equation for the stable tree 2024 Nicholas Chee
Franz Rembart
Matthias Winkel
+ Limit theorems for numbers of multiple returns in nonconventional arrays 2019 Yuri Kifer
+ Advanced concepts in random processes 2006 John A. Gubner