On 4-manifolds with finitely dominated covering spaces

Type: Article

Publication Date: 1994-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1994-1204375-2

Abstract

We show that if the universal covering space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M overTilde"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\widetilde {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a closed 4-manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finitely dominated then either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is aspherical, or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M overTilde"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>M</mml:mi> <mml:mo stretchy="false">~<!-- ~ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\tilde M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is homotopy equivalent to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{S^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S cubed"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{S^3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1 left-parenthesis upper M right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _1}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finite. We also give a criterion for a closed 4-manifold to be homotopy equivalent to one which fibres over the circle.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On 4-Manifolds with Finitely Dominated Covering Spaces 1994 Jonathan A. Hillman
+ Universal covers for Hausdorff limits of noncompact spaces 2003 Christina Sormani
Guofang Wei
+ PDF Chat An open collar theorem for 4-manifolds 1992 Craig R. Guilbault
+ PDF Chat On the shrinkability of decompositions of 3-manifolds 1970 William Voxman
+ PDF Chat Coverings of infinite-dimensional spheres 1973 William H. Cutler
+ The limit spaces of two-dimensional manifolds with uniformly bounded integral curvature 1999 Takashi Shioya
+ PDF Chat A class of manifolds covered by Euclidean space 1974 J. W. Maxwell
+ The behavior under projection of dilating sets in a covering space 1984 Burton Randol
+ PDF Chat On almost rational co-𝐻-spaces 1983 Hans-Werner Henn
+ Loop spaces and the compression theorem 2000 Bert Wiest
+ PDF Chat Characterizing the topology of infinite-dimensional 𝜎-compact manifolds 1984 Jerzy Mogilski
+ PDF Chat On 3-manifolds having surface bundles as branched coverings 1987 José María Montesinos
+ PDF Chat Cell-like 0-dimensional decompositions of 𝑆³ are 4-manifold factors 1979 Robert J. Daverman
W. H. Row
+ PDF Chat The space of retractions of a 2-manifold 1972 Neal R. Wagner
+ PDF Chat A decomposition theorem for closed compact connected P. L. 𝑛-manifolds 1972 B. G. Casler
+ On 3-manifolds that are boundaries of exotic 4-manifolds 2021 John B. Etnyre
Hyunki Min
Anubhav Mukherjee
+ On the dimension of almost 𝑛-dimensional spaces 1999 Michael Levin
E. D. Tymchatyn
+ PDF Chat Morrey space 1986 Cristina T. Zorko
+ PDF Chat On Newman’s theorem for finite-to-one open mappings on manifolds 1983 Louis F. McAuley
Eric E. Robinson
+ A bounding question for almost flat manifolds 2000 Shashidhar Upadhyay

Works That Cite This (0)

Action Title Year Authors