Type: Article
Publication Date: 1981-07-01
Citations: 77
DOI: https://doi.org/10.1090/s0002-9939-1981-0612739-1
It is shown that a separately continuous function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f colon upper X times upper Y right-arrow upper Z"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo>×</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f:X \times Y \to Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from the product of a certain type of Hausdorff space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a compact Hausdorff space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into a metrizable space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Z"> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding="application/x-tex">Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is jointly continuous on a set of the type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A times upper Y"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>×</mml:mo> <mml:mi>Y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A \times Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a dense <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript delta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{G_\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> set in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The class of Hausdorff spaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in question is defined by a gametheoretic condition. The result improves (and simplifies the proof of) a recent result of Namioka. Many "deep" theorems in functional analysis and automatic continuity theory are easy corollaries.
Action | Title | Year | Authors |
---|---|---|---|
+ | Locally compact transformation groups | 1957 |
Robert Ellis |
+ | Cluster Sets and Joint Continuity | 1974 |
Ray Edward Feiock |
+ PDF Chat | Uniform Boundedness for Groups | 1962 |
Irving Glicksberg |
+ PDF Chat | Separate continuity and joint continuity | 1974 |
Isaac Namioka |