Joint continuity of separately continuous functions

Type: Article

Publication Date: 1981-07-01

Citations: 77

DOI: https://doi.org/10.1090/s0002-9939-1981-0612739-1

Abstract

It is shown that a separately continuous function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f colon upper X times upper Y right-arrow upper Z"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo>×</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi>Z</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f:X \times Y \to Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from the product of a certain type of Hausdorff space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a compact Hausdorff space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into a metrizable space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Z"> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding="application/x-tex">Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is jointly continuous on a set of the type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A times upper Y"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>×</mml:mo> <mml:mi>Y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A \times Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a dense <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript delta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>δ</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{G_\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> set in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The class of Hausdorff spaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in question is defined by a gametheoretic condition. The result improves (and simplifies the proof of) a recent result of Namioka. Many "deep" theorems in functional analysis and automatic continuity theory are easy corollaries.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Continuous and proper decompositions 1971 George Williams
+ PDF Chat When does restricted continuity on continuous function graphs imply joint continuity? 1993 John P. Dalbec
+ PDF Chat Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance 1985 Gerald Beer
+ Separate continuity, joint continuity and the Lindelöf property 2005 P. S. Kenderov
Warren B. Moors
+ PDF Chat Compositions of continuous functions and connected functions 1992 Kenneth R. Kellum
Harvey M. Rosen
+ PDF Chat Continuous functions on the space of probabilities 1985 Sayan Bagchi
B. V. Rao
+ Relations approximated by continuous functions 2005 Ľubica Holá
R. McCoy
+ PDF Chat Uniform absolute continuity in spaces of set functions 1975 James D. Stein
+ PDF Chat Continuity of certain connected functions and multifunctions 1974 Melvin R. Hagan
+ Bounded continuous functions on a completely regular space 1972 F. Dennis Sentilles
+ PDF Chat Continuous multiplicative mappings on 𝐶(𝑋) 1998 Gorazd Lešnjak
Peter Šemrl
+ PDF Chat Points de continuité d’une fonction séparément continue 1986 Gabriel Debs
+ PDF Chat Weak and pointwise compactness in the space of bounded continuous functions 1981 Robert F. Wheeler
+ PDF Chat The typical structure of the sets {𝑥:𝑓(𝑥)=ℎ(𝑥)} for 𝑓 continuous and ℎ Lipschitz 1985 Zygmunt Wójtowicz
+ PDF Chat Extension of continuous functions into uniform spaces 1986 Salvador Hernández
+ PDF Chat Discrete Hausdorff transformations 1973 Gerald Leibowitz
+ PDF Chat Convolutions and absolute continuity 1973 Douglas Lind
+ PDF Chat Spaces of set-valued functions 1972 David N. O’Steen
+ PDF Chat Density points and bi-Lipschitz functions in 𝑅^{𝑚} 1992 Zoltán Buczolich
+ PDF Chat Continuously homogeneous continua and their arc components 1987 Janusz R. Prajs