On a classification of plane domains for Hardy classes

Type: Article

Publication Date: 1978-01-01

Citations: 5

DOI: https://doi.org/10.1090/s0002-9939-1978-0486533-9

Abstract

For every positive nubmer <italic>p</italic>, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{O_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the class of plane domains <italic>W</italic> for which the Hardy class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript p Baseline left-parenthesis upper W right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H_p}(W)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains no nonconstant functions, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p Superscript minus Baseline equals union StartSet upper O Subscript q Baseline colon 0 greater-than q greater-than p EndSet"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mo>∪<!-- ∪ --></mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> <mml:mo>:</mml:mo> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O_p^ - = \cup \{ {O_q}:0 &gt; q &gt; p\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper it is proved that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{O_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> strictly contains <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p Superscript minus"> <mml:semantics> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:annotation encoding="application/x-tex">O_p^ -</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than-or-slanted-equals 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p \geqslant 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat 𝑝-harmonic functions in the plane 1988 Juan J. Manfredi
+ PDF Chat Note on 𝐻² on planar domains 1985 Rodrigo Bañuelos
Thomas Wolff
+ On hyperbolicity and tautness modulo an analytic subset of Hartogs domains 2013 Do Duc Thai
Pascal J. Thomas
Nguyen Van Trao
Mai Anh Duc
+ PDF Chat Differentiability criteria and harmonic functions on 𝐵ⁿ 1983 Patrick Ahern
Kenneth D. Johnson
+ Integrability of superharmonic functions, uniform domains, and Hölder domains 1999 Yasuhiro Gotoh
+ PDF Chat Existence domains of holomorphic functions of restricted growth 1987 Marek Jarnicki
Peter Pflug
+ PDF Chat Criteria for functions to be of Hardy class 𝐻^{𝑝} 1979 Shinji Yamashita
+ A remark on Calderón-Zygmund classes and Sobolev spaces 2002 David Swanson
+ Superposition operator in Sobolev spaces on domains 2000 Denis A. Labutin
+ PDF Chat Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains 1989 Emil J. Straube
+ PDF Chat The minimal normal extension for 𝑀_{𝑧} on the Hardy space of a planar region 1990 John S. Spraker
+ PDF Chat The Hardy class of a function with slowly-growing area 1974 Lowell J. Hansen
+ Homogeneous polynomials on strictly convex domains 2007 Piotr Kot
+ PDF Chat Uniform and Sobolev extension domains 1992 David A. Herron
Pekka Koskela
+ PDF Chat A geometric characterization of 𝑁⁺ domains 1983 Patrick Ahern
William S. Cohn
+ On traces of Sobolev functions on the boundary of extension domains 2009 Markus Biegert
+ PDF Chat Subharmonic functions outside a compact set in 𝑅ⁿ 1982 Victor Anandam
+ Sets of range uniqueness for classes of continuous functions 1999 Maxim R. Burke
Krzysztof Ciesielski
+ Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane 2012 Alexandre Fernandes
María Aparecida Soares Ruas
+ PDF Chat Domain Bloch constants 1983 C. David Minda