Type: Article
Publication Date: 1978-01-01
Citations: 5
DOI: https://doi.org/10.1090/s0002-9939-1978-0486533-9
For every positive nubmer <italic>p</italic>, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{O_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the class of plane domains <italic>W</italic> for which the Hardy class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript p Baseline left-parenthesis upper W right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>W</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H_p}(W)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains no nonconstant functions, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p Superscript minus Baseline equals union StartSet upper O Subscript q Baseline colon 0 greater-than q greater-than p EndSet"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mo>∪<!-- ∪ --></mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> <mml:mo>:</mml:mo> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>q</mml:mi> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O_p^ - = \cup \{ {O_q}:0 > q > p\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper it is proved that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{O_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> strictly contains <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p Superscript minus"> <mml:semantics> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:annotation encoding="application/x-tex">O_p^ -</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than-or-slanted-equals 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p \geqslant 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Hardy Classes on Riemann Surfaces | 1969 |
Maurice Heins |
+ PDF Chat | Hardy classes on plane domains | 1978 |
Morisuke Hasumi |
+ PDF Chat | Classification theory for Hardy classes of analytic functions | 1971 |
Dennis A. Hejhal |
+ PDF Chat | On $H_{p}$ classification of plane domains | 1976 |
Shōji Kobayashi |