On the local equatorial characterization of zonoids and intersection bodies

Type: Article

Publication Date: 2007-11-27

Citations: 10

DOI: https://doi.org/10.1016/j.aim.2007.08.013

Locations

  • Advances in Mathematics - View

Similar Works

Action Title Year Authors
+ Local and equatorial characterization of unit balls of subspaces of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:math> and properties of the generalized cosine transform 2010 Jeffrey Schlaerth
+ PDF Chat Zonoids with an equatorial characterization 2016 Rafik Aramyan
+ Non-intersection bodies all of whose central sections are intersection bodies 2005 Maryna Yaskina
+ PDF Chat Non-intersection bodies, all of whose central sections are intersection bodies 2006 Maryna Yaskina
+ PDF Chat Intersection bodies that are not polar zonoids: A flat top condition in dimensions four and six 2013 M. Angeles Alfonseca
+ PDF Chat Zonoids whose polars are zonoids 1975 Rolf Schneider
+ PDF Chat Zonoids Whose Polars are Zonoids 1975 Rolf Schneider
+ Okounkov Bodies and Applications 2015 Megumi Harada
Kiumars Kaveh
Askold Khovanskiĭ
+ PDF Chat On zonoids whose polars are zonoids 1997 Yossi Lonke
+ On zonoids whose polars are zonoids 1997 Yossi Lonke
+ On zonoids whose polars are zonoids 1997 Yossi Lonke
+ Zonoids and Related Topics 1983 Rolf Schneider
Wolfgang Weil
+ Hadamard’s Characterization of the Ovaloids 1989 Heinz Hopf
+ PDF Chat Planes with non-division coordinate rings 1992 John R. Faulkner
+ PDF Chat Answers to questions of Gr\"unbaum and Loewner 2024 Sergii Myroshnychenko
Kateryna Tatarko
Vladyslav Yaskin
+ Henstock integration in the plane 1986 Krzysztof Ostaszewski
+ Ovals and Finite Bolyai-Lobachevsky Planes 1962 T. G. Ostrom
+ PDF Chat On the equivalence between locally polar and globally polar sets in $C^n$ 1983 Józef Sičiak
+ Co-Polar and Co-Axial Triangles in Conics 1907 Alan S. Hawkesworth
+ Co-Polar and Co-Axial Triangles in Conics 1907 Alan S. Hawkesworth