RANDOM RIGHT EIGENVALUES OF GAUSSIAN QUATERNIONIC MATRICES

Type: Article

Publication Date: 2011-12-21

Citations: 22

DOI: https://doi.org/10.1142/s2010326311500092

Abstract

We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance 1/n. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension n goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on more general Gaussian quaternionic random matrix models are also made.

Locations

  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On the semicircular law of large dimensional random quaternion matrices 2013 Yanqing Yin
Zhidong Bai
Jiang Hu
+ PDF Chat On the Semicircular Law of Large-Dimensional Random Quaternion Matrices 2015 Yanqing Yin
Zhidong Bai
Jiang Hu
+ No eigenvalues outside the support of the limiting spectral distribution of quaternion sample covariance matrices 2019 Huiqin Li
+ Quaternion Gaussian matrices satisfy the RIP 2017 Agnieszka Badeńska
Łukasz Błaszczyk
+ On the limit of the spectral distribution of large-dimensional random quaternion covariance matrices 2017 Yanqing Yin
Jiang Hu
+ Quaternion Gaussian Random Variables 2010 N. N. Vakhania
G. Chelidze
+ PDF Chat A Real Quaternion Spherical Ensemble of Random Matrices 2013 Anthony Mays
+ Statistical Ensembles of Complex, Quaternion, and Real Matrices 1965 J. Ginibre
+ Algebras for complex and quaternion random variables 2025 Charles R. Giardina
+ Rate of convergence for non-Hermitian random matrices and their products 2020 Jonas Jalowy
+ On a problem concerning quaternion valued Gaussian random variables 2010 G. Chelidze
N. N. Vakhania
+ PDF Chat Quaternionic second-order freeness and the fluctuations of large symplectically invariant random matrices 2020 C. E. I. Redelmeier
+ PDF Chat Convergence Rates of the Spectral Distributions of Large Random Quaternion Self-Dual Hermitian Matrices 2014 Yanqing Yin
Zhidong Bai
+ On the Limiting Empirical Measure of the sum of rank one matrices with log-concave distribution 2007 Alain Pajor
L. А. Pastur
+ Random Vectors with Values in Quaternion Hilbert Spaces 1999 N. N. Vakhania
+ Quaternionic Second-Order Freeness and the Fluctuations of Large Symplectically Invariant Random Matrices 2015 C. E. I. Redelmeier
+ Quaternionic Second-Order Freeness and the Fluctuations of Large Symplectically Invariant Random Matrices 2015 C. E. I. Redelmeier
+ Random weighted projections, random quadratic forms and random eigenvectors 2013 Van Vu
Ke Wang
+ On the rightmost eigenvalue of non-Hermitian random matrices 2022 Giorgio Cipolloni
László Erdős
Yuanyuan Xu
Dominik Schröder
+ PDF Chat On the limit of extreme eigenvalues of large dimensional random quaternion matrices 2014 Yanqing Yin
Zhidong Bai
Jiang Hu