The variety of pairs of commuting nilpotent matrices is irreducible

Type: Article

Publication Date: 2001-03-01

Citations: 73

DOI: https://doi.org/10.1007/bf01236059

Locations

  • Transformation Groups - View

Similar Works

Action Title Year Authors
+ Degree of the variety of pairs of nilpotent commuting matrices 2014 Adriana R. Silva
Israel Vainsencher
+ PDF Chat Varieties of pairs of nilpotent matrices annihilating each other 2004 Jan Schröer
+ PDF Chat On pairs of commuting nilpotent matrices 2009 Tomaž Košir
Polona Oblak
+ PDF Chat On the variety of almost commuting nilpotent matrices 2010 Eliana Zoque
+ PDF Chat Commuting nilpotent matrices and Artinian algebras 2010 Roberta Basili
Anthony Iarrobino
Leila Khatami
+ Varieties of pairs of nilpotent matrices annihilating each other 2002 Jan Schröer
+ PDF Chat Commuting pairs and triples of matrices and related varieties 2000 Robert M. Guralnick
B. A. Sethuraman
+ Similarity of nilpotent, integer matrices, or, four elementary categories 1982 Daniel Zelinsky
+ Matrices Nilpotentes 2018 Comité Editorial
+ Mixed Commuting Varieties over Nilpotent Matrices 2021 Jerry Magaña
Nham V. Ngo
+ PDF Chat NILPOTENTS ZERO DIVISORS OF A MULTIDIMENSIONAL MATRIX 2022 Masharipov Sirojiddin
+ Pairs of commuting matrices over a finite field 1960 Walter Feit
N. J. Fine
+ Nilpotent Matrices and the Jordan Canonical Form 1998 David F. Delchamps
+ Classes of Pairs of Commuting Matrices over a Finite Field 1963 L. Carlitz
+ Ideals of conjugacy classes of nilpotent matrices 2006 Riccardo Biagioli
Sara Faridi
Mercedes Helena Rosas Celis
+ Components of Algebraic Sets of Commuting and Nearly Commuting Matrices. 2010 Hsu-Wen Vincent Young
+ The equations of conjugacy classes of nilpotent matrices 1989 Jerzy Weyman
+ PDF Chat Subspaces fixed by a nilpotent matrix 2023 Marvin Anas Hahn
Gabriele Nebe
Mima Stanojkovski
Bernd Sturmfels
+ Nilpotent and locally nilpotent matrix groups 1976
+ Local and global reducibility of spaces of nilpotent matrices 2020 Mitja Mastnak
Matjaž Omladič
Heydar Radjavi
Klemen Šivic