Quadratic nonlinear derivative Schrödinger equations - Part 2

Type: Article

Publication Date: 2008-06-05

Citations: 13

DOI: https://doi.org/10.1090/s0002-9947-08-04471-1

Abstract

In this paper we consider the local well-posedness theory for the quadratic nonlinear Schrödinger equation with low regularity initial data in the case when the nonlinearity contains derivatives. We work in $2+1$ dimensions and prove a local well-posedness result for small initial data with low regularity.

Locations

  • arXiv (Cornell University) - View - PDF
  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Quadratic Nonlinear Derivative Schrödinger Equations - Part 2 2006 Ioan Bejenaru
+ Quadratic Nonlinear Derivative Schrödiger Equations - Part 1 2005 Ioan Bejenaru
+ Well-posedness for a nonlinear Schrödinger equation with quadratic derivative nonlinearities for bounded primitive initial data 2023 Kohei Akase
+ A refined global well-posedness result for Schrodinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations with low regularity periodic initial data 2013 Hiroyuki Hirayama
+ PDF Chat On quadratic derivative Schrödinger equations in one space dimension 2007 Atanas Stefanov
+ PDF Chat Low regularity solutions for a 2D quadratic nonlinear Schrödinger equation 2008 Ioan Bejenaru
Daniela De Silva
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$ 2008 Nobu Kishimoto
+ PDF Chat Small data well-posedness for derivative nonlinear Schrödinger equations 2018 Donlapark Pornnopparath
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ PDF Chat Quadratic forms for the 1-D semilinear Schrödinger equation 1996 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ PDF Chat Global well-posedness for the derivative nonlinear Schr\"odinger equation 2022 Hajer Bahouri
Galina Perelman
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Low regularity solutions for a 2D quadratic non-linear Schrödinger equation 2006 Ioan Bejenaru
Daniela De Silva
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ PDF Chat On the Well-posedness of the 1-D Quadratic Semilinear Schrödinger Equations 2004 Masanori Otani
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ Local well‐posedness for a system of quadratic nonlinear Schrödinger equations in one or two dimensions 2016 Huali Zhang

Works That Cite This (13)

Action Title Year Authors
+ PDF Chat A remark on the well-posedness for a system of quadratic derivative nonlinear Schrödinger equations 2022 Hiroyuki Hirayama
S. Kinoshita
Mamoru Okamoto
+ Local well-posedness for quadratic Schrödinger equations in $\mathbf{R^{1+1}}$: a normal form approach 2011 Seungly Oh
Atanas Stefanov
+ Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations 2020 Ruobing Bai
Yifei Wu
Jun Xue
+ Well-posedness for a quadratic derivative nonlinear Schrödinger system at the critical regularity 2016 Masahiro Ikeda
Nobu Kishimoto
Mamoru Okamoto
+ PDF Chat Small data well-posedness for derivative nonlinear Schrödinger equations 2018 Donlapark Pornnopparath
+ Quasilinear Schrödinger equations I: Small data and quadratic interactions 2012 Jeremy L. Marzuola
Jason Metcalfe
Daniel Tataru
+ PDF Chat Quasilinear Schrödinger Equations III: Large Data and Short Time 2021 Jeremy L. Marzuola
Jason Metcalfe
Daniel Tataru
+ Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data 2014 Hiroyuki Hirayama
+ PDF Chat Global existence and uniqueness of Schrödinger maps in dimensions<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>⩾</mml:mo><mml:mn>4</mml:mn></mml:math> 2007 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
+ PDF Chat Well-Posedness and Scattering for Nonlinear Schr&amp;ouml;dinger Equations with a Derivative Nonlinearity at the Scaling Critical Regularity 2015 Hiroyuki Hirayama