A Remark on Solutions of the Pell Equation

Type: Article

Publication Date: 2014-02-28

Citations: 10

DOI: https://doi.org/10.1093/imrn/rnu023

Abstract

Journal Article A Remark on Solutions of the Pell Equation Get access J. Bourgain J. Bourgain School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA Correspondence to be sent to: [email protected] Search for other works by this author on: Oxford Academic Google Scholar International Mathematics Research Notices, Volume 2015, Issue 10, 2015, Pages 2841–2855, https://doi.org/10.1093/imrn/rnu023 Published: 28 February 2014 Article history Received: 09 December 2013 Revision received: 15 January 2014 Accepted: 17 January 2014 Published: 28 February 2014

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Multiple Solutions of the Pell Equation 1928 D. H. Lehmer
+ PDF Chat Note on the Pellian Equation 1883 Samuel Roberts
+ An Application of Pell’s Equation 1981 Delano P. Wegener
+ A General Solution of Pell's Equation 2018 Rahil Miraj
+ An estimate for the fundamental solutions of a generalized Pell equation 1956 J. H. H. Chalk
+ PDF Chat On the least solution of Pell’s equation 1942 Loo-Keng Hua
+ Solving the Pell Equation 2008 Michael J. Jacobson
Hugh C. Williams
+ On the Pellian Equation 2004 E. P. Golubeva
+ On the pellian equation 1980 P. Hartung
+ Fundamental solutions to Pell equation with prescribed size 2012 Étienne Fouvry
Florent Jouve
+ PDF Chat On the Pell's equation 1927 Karel Petr
+ On a Pellian Equation Conjecture (II) 1961 L. J. Mordell
+ POLYNOMIAL SOLUTIONS FOR PELL’S EQUATION REVISITED 2015 R. A. MOLLIN
+ POLYNOMIAL SOLUTIONS FOR THE PELL’S EQUATION 2015 A. M. S. Ramasamy
+ 2780. On Pell's equation 1958 B. E. Lawrence
+ A Note on the Negative Pell Equation 2010 R. A. Mollin
Anitha Srinivasan
+ Solving Pell Equations 2006 Matthew Wright
+ PDF Chat Pell’s Equation 2017 Marcin Acewicz
Karol Pąk
+ A remark on solutions of the Pell equation 2013 Jean Bourgain
+ PDF Chat Pell Equations and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi mathvariant="normal">ℱ</mi> </mrow> <mrow> <msup> <mrow> <mi>p</mi> </mrow> <mrow> <mi>l</mi> </mrow> </msup> </mrow> </msub> </math>-Continued Fractions 2022 Seema Kushwaha