On the Range of the Radon Transform on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>and the Related Volberg’s Uncertainty Principle

Type: Article

Publication Date: 2015-01-01

Citations: 0

DOI: https://doi.org/10.1155/2015/375017

Abstract

We characterize the image of exponential type functions under the discrete Radon transform R on the lattice<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>of the Euclidean space<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo> </mml:mo><mml:mo> </mml:mo><mml:mfenced separators="|"><mml:mrow><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfenced></mml:math>. We also establish the generalization of Volberg's uncertainty principle on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>, which is proved by means of this characterization. The techniques of which we make use essentially in this paper are those of the Diophantine integral geometry as well as the Fourier analysis.

Locations

  • Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the range of the Radon 𝑑-plane transform and its dual 1991 Fulton B. Gonzalez
+ The finite radon transform : an honors thesis [(HONRS 499)] 2008 Andrea S. Zentz
+ PDF Chat The Radon transform on 𝑆𝐿(2,𝑅)/𝑆𝑂(2,𝑅) 1986 Dorothy Wallace
Ryuji Yamaguchi
+ On the range of the radon transform and its dual 1984 Alexander Hertle
+ The Roelcke-Selberg decomposition and the Radon transform 2000 André Unterberger
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mi>K</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>Spaces on the Unit Circle 2014 Jizhen Zhou
+ PDF Chat A range theorem for the Radon transform 1988 W. R. Madych
Donald C. Solmon
+ The radon transform in infinite-dimensional spaces 2012 В. И. Богачев
M. N. Lukintsova
+ PDF Chat The sum of two Radon-Nikodým-sets need not be a Radon-Nikodým-set 1985 Walter Schachermayer
+ PDF Chat Range characterization of Radon transforms on $S^n$ and $P^nR$ 1993 Tomoyuki Kakehi
+ PDF Chat A note on some spaces<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$L_\gamma $"><mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mi>γ</mml:mi></mml:msub></mml:mrow></mml:math>of distributions with Laplace transform 1990 Salvador Pérez Esteva
+ PDF Chat Isometries of Spaces of Radon Measures 2017 Marek Wójtowicz
+ Characterization of rectifiable measures in terms of 𝛼-numbers 2020 Jonas Azzam
Xavier Tolsa
Tatiana Toro
+ On the Range of the Radon d-Plane Transform and Its Dual 1991 Fulton B. Gonzalez
+ Quasi-Radon measures 1992 S. A. Malyugin
+ PDF Chat On the Radon-Nikodým theorem and locally convex spaces with the Radon-Nikodým property 1977 G. Y. H.
+ PDF Chat Radon-Nikodym theorems for vector valued measures 1972 Joseph Kupka
+ On the s-Gaussian measure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2024 Youjiang Lin
Sudan Xing
+ Radon‐Nikodym Theorem: Theory 2014 Stamatis Cambanis
+ Continuity of the radon transform and its inverse on Euclidean space 1983 Alexander Hertle

Works That Cite This (0)

Action Title Year Authors