A weighted inequality for the Kakeya maximal operator

Type: Article

Publication Date: 1994-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9939-1994-1170548-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper K Subscript delta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">K</mml:mi> </mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal {K}_\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Kakeya Maximal Operator defined as the supremum of averages over parallelepipeds of eccentricity <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="delta"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding="application/x-tex">\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper K Subscript delta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">K</mml:mi> </mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal {K}_\delta }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue EndAbsoluteValue script upper K Subscript delta Baseline f StartAbsoluteValue EndAbsoluteValue Subscript upper L Sub Superscript p Subscript left-parenthesis omega right-parenthesis Baseline less-than-or-slanted-equals upper C Subscript n comma p Baseline left-parenthesis 1 slash delta right-parenthesis Superscript n slash p minus 1 Baseline left-parenthesis log left-parenthesis 1 slash delta right-parenthesis right-parenthesis Superscript alpha Super Subscript n Baseline StartAbsoluteValue EndAbsoluteValue f StartAbsoluteValue EndAbsoluteValue Subscript upper L Sub Superscript p Subscript left-parenthesis script upper K Sub Subscript delta Subscript omega right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">K</mml:mi> </mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">K</mml:mi> </mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> </mml:msub> </mml:mrow> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">||{\mathcal {K}_\delta }f|{|_{{L^p}(\omega )}} \leqslant {C_{n,p}}{(1/\delta )^{n/p - 1}}{(\log (1/\delta ))^{{\alpha _n}}}||f|{|_{{L^p}({\mathcal {K}_\delta }\omega )}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p less-than-or-slanted-equals left-parenthesis n plus 1 right-parenthesis slash 2"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p \leqslant (n + 1)/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with some constants <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript n comma p Baseline comma alpha Subscript n Baseline"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="thickmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{C_{n,p}},\;{\alpha _n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, independent of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the weight <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ The Fefferman-Stein type inequality for the Kakeya maximal operator 2001 Hitoshi Tanaka
+ A Double-Weight L2-Inequality for the Kakeya Maximal Function 2020 Detlef Müller
Fernando Soria
+ PDF Chat A note on the Kakeya maximal operator and radial weights on the plane 2016 Hiroki Saito
Yoshihiro Sawano
+ On Kakeya-Nikodym type maximal inequalities 2015 Yakun Xi
+ PDF Chat A general maximal operator and the 𝐴_{𝑝}-condition 1983 Mark Leckband
C. J. Neugebauer
+ Composition operators with maximal norm on weighted Bergman spaces 2006 Brent J. Carswell
Christopher N. B. Hammond
+ A Marcinkiewicz maximal-multiplier theorem 2013 Richard Oberlin
+ PDF Chat A weighted weak type inequality for the maximal function 1985 Eric T. Sawyer
+ PDF Chat A Weighted Inequality for the Kakeya Maximal Operator 1994 A. M. Vargas
+ PDF Chat On weighted estimates for the Kakeya maximal operator 1990 Detlef Müller
+ A note on the Kakeya maximal function 1987 Detlef M�ller
+ A remark on the maximal operator for radial measures 2011 Adrián Infante
+ PDF Chat Boundedness and dimension for weighted average functions 1970 David P. Stanford
+ A Weighted Inequality for a Dyadic-Like Maximal Operator 2017 Mateusz Rapicki
+ Kakeya-type Maximal Operators 2017 Christopher D. Sogge
+ PDF Chat The Fefferman-Stein type inequality for the Kakeya maximal operator in Wolff’s range 2004 Hitoshi Tanaka
+ PDF Chat The operator inequality 𝑃≤𝐴*𝑃𝐴 1990 B. P. Duggal
+ PDF Chat Weighted inequalities for one-sided maximal functions 1990 F. J. Martín-Reyes
Pedro Ortega Salvador
A. de la Torre
+ A characterization of maximal operators associated with radial fourier multipliers 2016 Jongchon Kim
+ PDF Chat A remark on 𝐴₁-weights for the strong maximal function 1987 Fernando Soria