Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion

Type: Article

Publication Date: 2012-12-10

Citations: 10

DOI: https://doi.org/10.1103/physreve.86.066108

Abstract

The propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion coefficients is studied. Using coordinate changes, WKB approximations, and multiple scales analysis, we provide an analytic framework that describes propagation of the front up to the minimum of the diffusion coefficient. We also present results showing the behavior of the front after it passes the minimum. In each case, we show that standard traveling coordinate frames do not properly describe front propagation. Lastly, we provide numerical simulations to support our analysis and to show, that around the minimum, the motion of the front is arrested on asymptotically significant timescales.

Locations

  • Physical Review E - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Gradient estimates and symmetrization for Fisherā€“KPP front propagation with fractional diffusion 2017 Jeanā€Michel Roquejoffre
Andrei Tarfulea
+ Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion 2015 Jeanā€Michel Roquejoffre
Andrei Tarfulea
+ PDF Chat A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cutoff 2011 Nikola Popović
+ Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model 2021 Maud Elā€Hachem
Scott W. McCue
Matthew J. Simpson
+ Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model 2021 Maud Elā€Hachem
Scott W. McCue
Matthew J. Simpson
+ The Dynamics of Front Propagation in Nonlocal Reactionā€“Diffusion Equations 2024 Jeanā€Michel Roquejoffre
+ Accelerated front propagation for monostable equations with nonlocal diffusion: Multidimensional case 2016 Dmitri Finkelshtein
Yuri Kondratiev
Pasha Tkachov
+ Traveling wave fronts for generalized Fisher equations with spatio-temporal delays 2006 Shangbing Ai
+ Travelling fronts in nonlinear diffusion equations 1975 K. P. Hadeler
Franz Rothe
+ PDF Chat Diffusion coefficient of propagating fronts with multiplicative noise 2001 Andrea Rocco
Jaume Casademunt
Ute Ebert
Wim van Saarloos
+ Accelerated front propagation for monostable equations with nonlocal diffusion: Multidimensional case 2016 Dmitri Finkelshtein
Yuri Kondratiev
Pasha Tkachov
+ PDF Chat Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case 2019 Dmitri Finkelshtein
Yuri Kondratiev
Pasha Tkachov
+ Asymptotics of the front motion in the reaction-diffusion-advection problem 2014 E. A. Antipov
Š. Š¢. Š›ŠµŠ²Š°ŃˆŠ¾Š²Š°
Š. Š. ŠŠµŃ„ŠµŠ“Š¾Š²
+ Analysis of propagating fronts in a nonlinear diffusion model with chemotaxis 2012 M.B.A. Mansour
+ PDF Chat Fisher Waves in the Strong Noise Limit 2009 Oskar Hallatschek
Kirill S. Korolev
+ PDF Chat Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity 2021 GrƩgory Faye
Thomas Giletti
Matt Holzer
+ PDF Chat Front propagation and clustering in the stochastic nonlocal Fisher equation 2018 Yehuda A. Ganan
David A. Kessler
+ The Bramson correction for Fisher--KPP equations with nonlocal diffusion 2020 Cole Graham
+ The evolution of fronts in KPP-type reaction-diffusion models with cut-off reaction rates 2019 Alex D. O. Tisbury
+ Asymptotic behavior of travelling fronts of the delayed Fisher equation 2008 Shuxia Pan

Works That Cite This (10)

Action Title Year Authors
+ Mathematical Models for Cell Migration with Real-Time Cell Cycle Dynamics 2018 Sean T. Vittadello
Scott W. McCue
Gency Gunasingh
Nikolas K. Haass
Matthew J. Simpson
+ PDF Chat Quantifying the effect of experimental design choices for in vitro scratch assays 2016 Stuart T. Johnston
Joshua V. Ross
Benjamin J. Binder
D. L. S. McElwain
Parvathi Haridas
Matthew J. Simpson
+ PDF Chat Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOMā„¢ assay data using the Fisher-Kolmogorov model 2015 Stuart T. Johnston
Esha T. Shah
Lisa K. Chopin
D. L. S. McElwain
Matthew J. Simpson
+ Reproducibility of scratch assays is affected by the initial degree of confluence: Experiments, modelling and model selection 2015 Wang Jin
Esha T. Shah
Catherine J. Penington
Scott W. McCue
Lisa K. Chopin
Matthew J. Simpson
+ PDF Chat Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions 2016 Wang Jin
Catherine J. Penington
Scott W. McCue
Matthew J. Simpson
+ Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions 2016 Wang Jin
Catherine J. Penington
Scott W. McCue
Matthew J. Simpson
+ PDF Chat Investigation of a Structured Fisher's Equation with Applications in Biochemistry 2018 John T. Nardini
David M. Bortz
+ Investigating the Reproducibility of In Vitro Cell Biology Assays Using Mathematical Models 2017 Wang Jin
+ PDF Chat Mathematical models for cell migration with real-time cell cycle dynamics 2017 Sean T. Vittadello
Scott W. McCue
Gency Gunasingh
Nikolas K. Haass
Matthew J. Simpson
+ PDF Chat Effective particle methods for Fisherā€“Kolmogorov equations: Theory and applications to brain tumor dynamics 2014 Juan Belmonte-Beitia
Gabriel F. Calvo
Victor M. PĆ©rez-GarcıĢa