ON STRONGLY CLEAN MATRIX RINGS

Type: Article

Publication Date: 2006-09-01

Citations: 17

DOI: https://doi.org/10.1017/s0017089506003284

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button. A ring $R$ with identity is called strongly clean if every element of $R$ is the sum of an idempotent and a unit that commute. For a commutative local ring $R$, $n=3,4$, and $m, k, s \in {\mathbb N}$ it is proved that ${\mathbb M}_n(R)$ is strongly clean if and only if ${\mathbb M}_n(R[[x]])$ is strongly clean if and only if ${\mathbb M}_n(R[[x_1, x_2, \ldots, x_m]])$ is strongly clean if and only if $ {\mathbb M}_n(\frac{R[x]}{(x^{k})})$ is strongly clean if and only if $ {\mathbb M}_n(\dfrac{R[x_{1}, x_{2}, \ldots , x_{s}]}{(x^{n_1}_{1}, x^{n_{2}}_{2}, \ldots , x^{n_{s}}_{s})}) $ is strongly clean if and only if ${\mathbb M}_n(R \propto R)$ is strongly clean where $ R\propto R=\{\scriptsize(\begin{array}{@{}c@{\quad}c@{}} a& b \\ 0& a \end{array}): a, b \in R \}$ is the trivial extension of $R$. This extends a result of J. Chen, X. Yang and Y. Zhou [$\mathbf{5}$] from $n=2$ to 3 and 4.

Locations

  • Glasgow Mathematical Journal - View - PDF

Similar Works

Action Title Year Authors
+ Strong cleanness of the $2\times 2$ matrix ring over a general local ring 2008 Xiande Yang
Yiqiang Zhou
+ PDF Chat Strong cleanness of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mn>2</mml:mn></mml:math> matrix ring over a general local ring 2008 Xiande Yang
Yiqiang Zhou
+ Strongly Clean Matrix Rings Over Commutative Rings 2008 Lingling Fan
Xiande Yang
+ STRONGLY CLEAN MATRICES OVER COMMUTATIVE LOCAL RINGS 2012 H. Chen
Orhan Gürgün
Handan Köse
+ A Note on Strongly Clean Matrix Rings 2010 Lingling Fan
Xiande Yang
+ Strongly clean triangular matrix rings with endomorphisms 2013 H. Chen
Handan Köse
Yosum Kurtulmaz
+ Certain strongly clean matrices over local rings 2018 Tugce Pekacar Calci
Huanyin Chen
+ The strong $P$-cleanness over rings 2013 Huanyin Chen
Handan Köse
Yosum Kurtulmaz
+ Strongly Rad-clean Matrices over Commutative Local Rings 2022 Huanyin Chen
Handan Köse
Yosum Kurtulmaz
+ Strongly unit nil-clean rings 2016 Huanyin Chen
Marjan Sheibani
+ On Strongly Clean Matrix and Triangular Matrix Rings 2006 Jianlong Chen
Xiande Yang
Yiqiang Zhou
+ Strongly clean rings and g(x)-clean rings 2007 Xiande Yang
+ Strongly clean matrix rings over local rings 2006 Yuanlin Li
+ Uniquely strongly clean triangular matrices 2015 Huanyin Chen
Orhan Gürgün
Handan Köse
+ PDF Chat On two open problems about strongly clean rings 2004 Wang Zhou
Jianlong Chen
+ On Perfectly Clean Rings 2013 H. Chen
S. Halicioglu
H. Kose
+ On Perfectly Clean Rings 2013 H. Chen
Sait Halıcıoğlu
Handan Köse
+ Study on Clean Matrices in M2(Z) 2022 K. N. Rajeswari
Rafia Aziz
+ Strongly Clean Matrices over Commutative Rings 2013 Huanyin Chen
Handan Köse
Yosum Kurtulmaz
+ PDF Chat On some extensions of strongly unit nil-clean rings 2024 Ruhollah Barati