On the <i>L</i><sub><i>q</i></sub> norm of cyclotomic Littlewood polynomials on the unit circle

Type: Article

Publication Date: 2011-07-13

Citations: 3

DOI: https://doi.org/10.1017/s0305004111000387

Abstract

Let n be the collection of all (Littlewood) polynomials of degree n with coefficients in {−1, 1}. In this paper we prove that if ( P 2ν ) is a sequence of cyclotomic polynomials P 2ν ∈ 2ν , then for every q &gt; 2 with some a = a ( q ) &gt; 1/2 depending only on q , where The case q = 4 of the above result is due to P. Borwein, Choi and Ferguson. We also prove that if ( P 2ν ) is a sequence of cyclotomic polynomials P 2ν ∈ 2ν , then for every 0 &lt; q &lt; 2 with some 0 &lt; b = b ( q ) &lt; 1/2 depending only on q . Similar results are conjectured for Littlewood polynomials of odd degree. Our main tool here is the Borwein–Choi Factorization Theorem.

Locations

  • Mathematical Proceedings of the Cambridge Philosophical Society - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Notes on the Borwein-Choi Conjecture of Littlewood Cyclotomic Polynomials 2009 Shao
Fang
Hong
Wei
Cao
+ PDF Chat Notes on the Borwein-Choi conjecture of Littlewood cyclotomic polynomials 2008 Shao Fang Hong
Wei Cao
+ Notes on the Borwein-Choi Conjecture of Littlewood Cyclotomic Polynomials 2009 Wei Hong
+ Cyclotomic Polynomials 2017 Kevin Broughan
+ PDF Chat Para-orthogonal polynomials on the unit circle generated by Kronecker polynomials 2021 Alexei Zhedanov
+ PDF Chat <i>L</i><sup>q</sup> Norms of Fekete and Related Polynomials 2016 Christian Günther
Kai‐Uwe Schmidt
+ On Littlewood and Newman polynomial multiples of Borwein polynomials 2017 Paulius Drungilas
Jonas Jankauskas
Jonas Šiurys
+ Corrigenda To: “A Gysin Formula for Hall-Littlewood Polynomials” 2015 Piotr Pragacz
+ On Newman and Littlewood multiples of Borwein polynomials 2016 Paulius Drungilas
Jonas Jankauskas
Jonas Šiurys
+ On Newman and Littlewood multiples of Borwein polynomials 2016 Paulius Drungilas
Jonas Jankauskas
Jonas Šiurys
+ PDF Chat On monomiality property of <i>q</i> -Gould-Hopper-Appell polynomials 2025 Nusrat Raza
Mohammed Fadel
Subuhi Khan
+ Products of cyclotomic polynomials on unit circle 2016 Bartłomiej Bzdęga
+ Products of cyclotomic polynomials on unit circle 2016 Bartłomiej Bzdęga
+ A Note on Cyclotomic Polynomials 1962 L. Mirsky
+ PDF Chat On the representation of units by cyclotomic polynomials 1980 Veikko Ennola
+ The $L_q$ norm of the Rudin-Shapiro polynomials on subarcs of the unit circle 2023 Tamás Erdélyi
+ CYCLOTOMIC FACTORS OF BORWEIN POLYNOMIALS 2019 Biswajit Koley
A. Satyanarayana Reddy
+ PDF Chat The<i>L</i><sub>4</sub>norm of Littlewood polynomials derived from the Jacobi symbol 2012 Jonathan Jedwab
Kai‐Uwe Schmidt
+ $L^q$ norms of Fekete and related polynomials 2016 Christian Günther
Kai‐Uwe Schmidt
+ On the Littlewood cyclotomic polynomials 2007 Shabnam Akhtari
Stephen Choi