Stable indecomposability of loop spaces on symplectic groups

Type: Article

Publication Date: 2007-10-25

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-07-09144-7

Abstract

We prove that $\Omega Sp(n)$ is stably indecomposable if $n\geq 2$ or $n=\infty$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Metastable homotopy groups of $Sp(n)$ 1987 Kaoru Morisugi
+ PDF Chat Homotopy groups of symplectic groups 1963 Mamoru Mimura
Hiroshi Toda
+ Symplectic Pontrjagin numbers and homotopy groups of MSp(n) 1982 光範 今岡
+ Odd primary infinite families in stable homotopy theory 1981 Ralph L. Cohen
+ A Note on the Stable Homotopy Groups of MSp(n) 1983 Mitsunori Imaoka
+ Homotopy groups of $Sp(n)/Sp(n-2)$ 1969 Kunio Ōguchi
+ PDF Chat Symplectic groups are N-determined 2-compact groups 2006 Aleš Vavpetič
Antonio Viruel
+ Self-extensions for finite symplectic groups via algebraic groups 2006 Cornelius Pillen
+ Abelianization of stable envelopes in symplectic resolutions 2013 Daniel K. Shenfeld
+ PDF Chat The space of loops on a symplectic group 1978 Akira Kono
Kazumoto Kozima
+ A Family of Indecomposable Symplectic Manifolds 1972 J. C. Alexander
+ Involutions on homotopy complex projective spaces and related topics 1972 Ted Petrie
+ Conjugacy classes in integral symplectic groups 2006 Qingjie Yang
+ The homotopy types of PSp(n)-gauge groups over S2 2021 Sajjad Mohammadi
+ Symplectic and Poisson structures on some loop groups 1994 Kentaro Mikami
+ Non-Siegel Eisenstein series for symplectic groups 2017 Marcela Hanzer
+ Chow groups and stable maps 2012 Daniel Huybrechts
+ Stable homotopy groups 2023 Guozhen Wang
Xu Zhouli
+ PDF Chat Stable homotopy groups 2023 Guozhen Wang
Zhouli Xu
+ PDF Chat Apartment Classes of Integral Symplectic Groups 2024 Benjamin Brück
Robin J. Sroka

Works That Cite This (0)

Action Title Year Authors