Type: Article
Publication Date: 1987-01-01
Citations: 0
DOI: https://doi.org/10.1090/s0002-9947-1987-0891635-9
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi equals circled-times pi Subscript upsilon"> <mml:semantics> <mml:mrow> <mml:mi>Ο<!-- Ο --></mml:mi> <mml:mo>=</mml:mo> <mml:mo>β<!-- β --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Ο<!-- Ο --></mml:mi> <mml:mi>Ο <!-- Ο --></mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi = \otimes {\pi _\upsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a cuspidal automorphic representation of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G upper L left-parenthesis n comma upper F Subscript upper A Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">GL(n,{F_A})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the adeles of a number field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Galois extension of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet g EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>g</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ g\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote a conjugacy class of the Galois group. The author considers those cuspidal automorphic representations which have local components <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi Subscript upsilon"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Ο<!-- Ο --></mml:mi> <mml:mi>Ο <!-- Ο --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _\upsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whenever the Frobenius of the prime <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upsilon"> <mml:semantics> <mml:mi>Ο <!-- Ο --></mml:mi> <mml:annotation encoding="application/x-tex">\upsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet g EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>g</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ g\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, showing that such representations are often easily described and finite in number. This generalizes a result of Moreno [Bull. Amer. Math. Soc. <bold>11</bold> (1984), pp. 180-182].
Action | Title | Year | Authors |
---|