Strong multiplicity theorems for 𝐺𝐿(𝑛)

Type: Article

Publication Date: 1987-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9947-1987-0891635-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi equals circled-times pi Subscript upsilon"> <mml:semantics> <mml:mrow> <mml:mi>Ο€<!-- Ο€ --></mml:mi> <mml:mo>=</mml:mo> <mml:mo>βŠ—<!-- βŠ— --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Ο€<!-- Ο€ --></mml:mi> <mml:mi>Ο…<!-- Ο… --></mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi = \otimes {\pi _\upsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a cuspidal automorphic representation of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G upper L left-parenthesis n comma upper F Subscript upper A Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">GL(n,{F_A})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the adeles of a number field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Galois extension of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet g EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>g</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ g\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote a conjugacy class of the Galois group. The author considers those cuspidal automorphic representations which have local components <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi Subscript upsilon"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Ο€<!-- Ο€ --></mml:mi> <mml:mi>Ο…<!-- Ο… --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _\upsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whenever the Frobenius of the prime <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upsilon"> <mml:semantics> <mml:mi>Ο…<!-- Ο… --></mml:mi> <mml:annotation encoding="application/x-tex">\upsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet g EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>g</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ g\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, showing that such representations are often easily described and finite in number. This generalizes a result of Moreno [Bull. Amer. Math. Soc. <bold>11</bold> (1984), pp. 180-182].

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On a correspondence between cuspidal representations of 𝐺𝐿_{2𝑛} and 𝑆𝑝̃_{2𝑛} 1999 David Ginzburg
Stephen Rallis
David Soudry
+ PDF Chat Spectral multiplicity for 𝐺𝑙_{𝑛}(𝑅) 1992 J. M. Huntley
+ Non-existence of Siegel zeros for cuspidal functorial products on 𝐺𝐿(2)×𝐺𝐿(3) 2022 Wenzhi Luo
+ Towards a 𝐺𝐿_{𝑛} variant of the Hoheisel phenomenon 2021 Peter Humphries
Jesse Thorner
+ Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂ 2002 Henry Kim
+ The sup-norm problem for automorphic cusp forms of 𝑃𝐺𝐿(𝑛,β„€[π•š]) 2023 PΓ©ter Maga
Gergely ZΓ‘brΓ‘di
+ Base change and triple product 𝐿-series 2022 Ming-Lun Hsieh
Shunsuke Yamana
+ Mass equidistribution for automorphic forms of cohomological type on 𝐺𝐿₂ 2011 Simon Marshall
+ Simultaneous nonvanishing of 𝐺𝐿(2)×𝐺𝐿(2) and 𝐺𝐿(2) 𝐿-functions 2014 Sheng‐Chi Liu
+ Vanishing linear periods of cuspidal automorphic sheaves for 𝐺𝐿_{π‘š+𝑛} 2024 Fang Shi
+ Level-raising for automorphic forms on 𝐺𝐿_{𝑛} 2021 Aditya Karnataki
+ On 𝑝-adic 𝐿-functions for Hilbert modular forms 2024 John Bergdall
David J. Hansen
+ Resonance of automorphic forms for 𝐺𝐿(3) 2014 Xiumin Ren
Yangbo Ye
+ The special values of the standard 𝐿-functions for 𝐺𝑆𝑝_{2𝑛}×𝐺𝐿₁ 2021 Shuji Horinaga
Ameya Pitale
Abhishek Saha
Ralf Schmidt
+ PDF Chat An analogue of Siegel’s πœ™-operator for automorphic forms for 𝐺𝐿_{𝑛}(𝑍) 1992 Douglas Grenier
+ PDF Chat On a Rankin-Selberg <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>-Function over Different Fields 2014 Tim Gillespie
+ Non-vanishing of derivatives of 𝐺𝐿(3)×𝐺𝐿(2) 𝐿-functions 2011 Qingfeng Sun
+ Cuspidal integrals for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi mathvariant="normal">SL</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>βˆ•</mml:mo><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>Ο΅</mml:mi></mml:mrow></mml:msub></mml:math> 2018 Mogens Flensted–Jensen
Job J. Kuit
+ The circle method and bounds for 𝐿-functionsβ€”III: 𝑑-aspect subconvexity for 𝐺𝐿(3) 𝐿-functions 2015 Ritabrata Munshi
+ Bessel periods and anticyclotomic 𝑝-adic spinor 𝐿-functions 2024 Ming-Lun Hsieh
Shunsuke Yamana

Works That Cite This (0)

Action Title Year Authors