Spectra of elements in the group ring of $\mathrm{SU}(2)$

Type: Article

Publication Date: 1999-03-31

Citations: 82

DOI: https://doi.org/10.1007/pl00011157

Abstract

We present a new method for establishing the “gap” property for finitely generated subgroups of \mathrm{SU}(2) , providing an elementary solution of Ruziewicz problem on S^2 as well as giving many new examples of finitely generated subgroups of \mathrm{SU}(2) with an explicit gap. The distribution of the eigenvalues of the elements of the group ring \mathbf{R}[\mathrm{SU}(2)] in the N -th irreducible representation of \mathrm{SU}(2) is also studied. Numerical experiments indicate that for a generic (in measure) element of \mathbf{R}[\mathrm{SU}(2)] , the “unfolded” consecutive spacings distribution approaches the GOE spacing law of random matrix theory (for N even) and the GSE spacing law (for N odd) as N\to \infty ; we establish several results in this direction. For certain special “arithmetic” (or Ramanujan ) elements of \mathbf{R}[\mathrm{SU}(2)] the experiments indicate that the unfolded consecutive spacing distribution follows Poisson statistics; we provide a sharp estimate in that direction.

Locations

  • Journal of the European Mathematical Society - View - PDF
  • Journal of the European Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A numerical study on exceptional eigenvalues of certain congruence subgroups of $$\mathrm {SO}(n,1)$$ SO ( n , 1 ) and $$\mathrm {SU}(n,1)$$ SU ( n , 1 ) 2014 Emilio A. Lauret
+ Quantum Chaos on random Cayley graphs of ${\rm SL}_2[\mathbb{Z}/p\mathbb{Z}]$ 2017 Igor Rivin
Naser T. Sardari
+ Quantum Chaos on random Cayley graphs of ${\rm SL}_2[\mathbb{Z}/p\mathbb{Z}]$ 2017 Igor Rivin
Naser T. Sardari
+ PDF Chat On the dimension of Furstenberg measure for $${ SL}_{2}(\mathbb {R})$$ S L 2 ( R ) random matrix products 2017 Michael Hochman
Boris Solomyak
+ PDF A Note on the Sequence Space b_p^(r,s) (G) 2017 Mustafa Cemil Bişgin
+ Non-spectral problem of self-affine measures with consecutive collinear digits in $$\mathbb{R}^2$$ 2024 Juan Su
Sha Wu
+ Spectral Gap for a Class of Random Billiards 2012 Renato Feres
Hong-Kun Zhang
+ Wigner Surmise for Higher Order Level Spacings in Random Matrix Theory 2020 Wen-Jia Rao
+ PDF Chat Spectrality of a class of moran measures on $\mathbb{R}^2$ 2024 Jing‐Cheng Liu
Qiao-Qin Liu
Jun Luo
J. J. Wang
+ Spectra of the Sierpiński type spectral measure and their Beurling dimensions 2023 Jinjun Li
Zhiyi Wu
+ PDF Chat Higher-order level spacings in random matrix theory based on Wigner's conjecture 2020 Wen-Jia Rao
+ SOME NEW SEQUENCE SPACES DERIVED BY THE COMPOSITION OF BINOMIAL MATRIX AND DOUBLE BAND MATRIX 2019 Abdulcabbar Sönmez
+ A Class of Homogeneous Moran Spectral Measures with Eight-Element Digit Sets on $${\mathbb R}^4$$ 2021 Yan-Song Fu
Meng Zhu
+ Gap distributions of Fourier quasicrystals with integer weights via Lee–Yang polynomials 2024 Lior Alon
Cynthia Vinzant
+ Gap distributions of Fourier quasicrystals via Lee-Yang polynomials 2023 Lior Alon
Cynthia Vinzant
+ PDF Свойство взаимности высших сохраняющихся зарядов в секторе $\mathfrak{sl}(2)$ $\mathcal{N}=4$ суперсимметричной теории Янга - Миллса 2011 Г Макорини
Guido Macorini
Г Макорини
Guido Macorini
М Беккариа
Matteo Beccaria
М Беккариа
Matteo Beccaria
+ Random walks on $$\textrm{SL}_2({\mathbb {C}})$$: spectral gap and limit theorems 2023 Tien‐Cuong Dinh
Lucas Kaufmann
Hao Wu
+ TWO SURVEY SEMINARS ON RECENT DEVELOPMENTS IN S-MATRIX THEORY. 1967 David I. Olive
+ Distribution of the determinants of sums of matrices 2020 Daewoong Cheong
Doowon Koh
Thang Pham
Lê Anh Vinh
+ Spectral measures for $Sp(2)$ 2023 David Evans
Mathew Pugh