Type: Article
Publication Date: 2003-05-14
Citations: 95
DOI: https://doi.org/10.1090/s0025-5718-03-01525-4
This paper proves the convergence of the ghost fluid method for second order elliptic partial differential equations with interfacial jumps. A weak formulation of the problem is first presented, which then yields the existence and uniqueness of a solution to the problem by classical methods. It is shown that the application of the ghost fluid method by Fedkiw, Kang, and Liu to this problem can be obtained in a natural way through discretization of the weak formulation. An abstract framework is given for proving the convergence of finite difference methods derived from a weak problem, and as a consequence, the ghost fluid method is proved to be convergent.