Parameters of pseudorandom quantum circuits

Type: Article

Publication Date: 2008-11-21

Citations: 29

DOI: https://doi.org/10.1103/physreva.78.052332

Abstract

Pseudorandom circuits generate quantum states and unitary operators which are approximately distributed according to the unitarily invariant Haar measure. We explore how several design parameters affect the efficiency of pseudorandom circuits, with the goal of identifying relevant tradeoffs and optimizing convergence. The parameters we explore include the choice of single- and two-qubit gates, the topology of the underlying physical qubit architecture, the probabilistic application of two-qubit gates, as well as circuit size, initialization, and the effect of control constraints. Building on the equivalence between pseudorandom circuits and approximate $t$-designs, a Markov matrix approach is employed to analyze asymptotic convergence properties of pseudorandom second-order moments to a 2-design. Quantitative results on the convergence rate as a function of the circuit size are presented for qubit topologies with a sufficient degree of symmetry. Our results may be useful towards optimizing the efficiency of random state and operator generation.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Convergence efficiency of quantum gates and circuits 2024 Linghang Kong
Zimu Li
Zi-Wen Liu
+ PDF Chat Quantum pseudorandomness from cluster-state quantum computation 2008 Winton Brown
Yaakov S. Weinstein
Lorenza Viola
+ PDF Chat Random quantum circuits are approximate unitary $t$-designs in depth $O\left(nt^{5+o(1)}\right)$ 2022 Jonas Haferkamp
+ PDF Chat Convergence conditions for random quantum circuits 2005 Joseph Emerson
Etera R. Livine
Seth Lloyd
+ PDF Chat Exact and approximate unitary 2-designs and their application to fidelity estimation 2009 Christoph Dankert
Richard Cleve
Joseph Emerson
Etera R. Livine
+ PDF Chat Efficient Unitary T-designs from Random Sums 2024 Chi-Fang Chen
Jordan Docter
Michelle Xu
Adam Bouland
Patrick Hayden
+ Random Quantum Circuits and Pseudo-Random Unitary Operators 2005 Joseph Emerson
Etera R. Livine
Seth Lloyd
+ PDF Chat Simple constructions of linear-depth t-designs and pseudorandom unitaries 2024 Tony Metger
Alexander Poremba
Makrand Sinha
Henry Yuen
+ Pseudo-randomness and Learning in Quantum Computation 2010 Richard A. Low
+ Pseudo-randomness and Learning in Quantum Computation 2010 Richard A. Low
+ PDF Chat Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates 2022 Jonas Haferkamp
Felipe Montealegre-Mora
Markus Heinrich
Jens Eisert
David Groß
Ingo Roth
+ (Pseudo) Random Quantum States with Binary Phase 2019 Zvika Brakerski
Omri Shmueli
+ Characterizing quantum pseudorandomness by machine learning 2022 Masahiro Fujii
Ryosuke Kutsuzawa
Yasunari Suzuki
Yoshihumi Nakata
Masaki Owari
+ Pseudorandom unitaries are neither real nor sparse nor noise-robust 2023 Tobias Haug
Kishor Bharti
Dax Enshan Koh
+ PDF Chat Pseudorandom circuits from Clifford-plus-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi></mml:math>gates 2013 Yaakov S. Weinstein
+ PDF Chat Random quantum circuits are approximate unitary <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>t</mml:mi></mml:math>-designs in depth <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:msup><mml:mi>t</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mn>5</mml:mn><mml:mo>+</mml:mo><mml:mi>o</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow… 2022 Jonas Haferkamp
+ PDF Chat Convergence Rates for Arbitrary Statistical Moments of Random Quantum Circuits 2010 Winton Brown
Lorenza Viola
+ Pseudo) Random Quantum States with Binary Phase 2019 Zvika Brakerski
Omri Shmueli
+ A random matrix model for random approximate $t$-designs 2022 Piotr Dulian
Adam Sawicki
+ Sampling random quantum circuits: a pedestrian's guide 2020 Sean Mullane

Works That Cite This (21)

Action Title Year Authors
+ How the form of weighted networks impacts quantum reservoir computation 2022 Aoi Hayashi
Akitada Sakurai
S. Nishio
William J. Munro
Kae Nemoto
+ PDF Chat Mixing Properties of Stochastic Quantum Hamiltonians 2017 Emilio Onorati
Oliver Buerschaper
Martin Kliesch
Winton Brown
Albert H. Werner
Jens Eisert
+ PDF Chat Quantum Simulation Using Noisy Unitary Circuits and Measurements 2022 Oliver Lunt
Jonas Richter
Arijeet Pal
+ Characterizing quantum supremacy in near-term devices 2018 Sergio Boixo
Sergei V. Isakov
Vadim Smelyanskiy
Ryan Babbush
Nan Ding
Jiang Zhang
Michael J. Bremner
John M. Martinis
Hartmut Neven
+ PDF Chat Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms 2019 Sukin Sim
Peter D. Johnson
Alán Aspuru‐Guzik
+ PDF Chat Unitary 2-designs from random <i>X</i>- and <i>Z</i>-diagonal unitaries 2017 Yoshifumi Nakata
Christoph Hirche
Ciara Morgan
Andreas Winter
+ Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States 2022 Zohreh Davoudi
Niklas Mueller
Connor Powers
+ Implementing unitary 2-designs using random diagonal-unitary matrices 2015 Yoshifumi Nakata
Christoph Hirche
Ciara Morgan
Andreas Winter
+ PDF Chat Quantum Circuits for Exact Unitary <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>t</mml:mi></mml:math> -Designs and Applications to Higher-Order Randomized Benchmarking 2021 Yoshifumi Nakata
Zhao Da
Takayuki Okuda
Eiichi Bannaĭ
Yasunari Suzuki
Shiro Tamiya
Kentaro Heya
Zhiguang Yan
Kun Zuo
Shuhei Tamate
+ PDF Chat Decoupling with random diagonal unitaries 2017 Yoshifumi Nakata
Christoph Hirche
Ciara Morgan
Andreas Winter