Existence of solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian equations with singular coefficients in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math>

Type: Article

Publication Date: 2008-06-25

Citations: 30

DOI: https://doi.org/10.1016/j.jmaa.2008.06.026

Locations

  • Journal of Mathematical Analysis and Applications - View

Similar Works

Action Title Year Authors
+ Existence of solution for a degenerate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math> 2008 Claudianor O. Alves
+ Existence of solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mn>2</mml:mn><mml:mspace width="0.16667em" /><mml:mi>n</mml:mi><mml:mstyle mathvariant="normal"><mml:mi>th</mml:mi></mml:mstyle></mml:math>-order nonlinear <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-Laplacian differential equations 2016 Lorena Saavedra
Stepan Tersian
+ Existence of infinitely many solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-Laplacian equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:math> 2013 Xiaoyan Lin
Xianhua Tang
+ Existence of solutions for weighted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian system boundary value problems 2006 Qihu Zhang
+ Existence of a nontrivial solution for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-Laplacian in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi… 2014 Marcio Fialho Chaves
Grey Ercole
Olı́mpio H. Miyagaki
+ Existence of radial solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math> 2005 Qihu Zhang
+ Corrigendum to “Existence of solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian problems on a bounded domain” [J. Math. Anal. Appl. 306 (2005) 604–618] 2005 J. Chabrowski
Yongqiang Fu
+ Solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian Dirichlet problems with singular coefficients 2005 Xianling Fan
+ Existence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si2.svg"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:math> singular solutions to Euler–Nernst–Planck–Poisson system on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e36" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:… 2023 Yiya Qiu
Lifeng Zhao
+ Existence of positive solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>n</mml:mi></mml:math>th-order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-Laplacian singular super-linear boundary value problems 2015 Zhongli Wei
+ PDF Chat Existence of Positive Solutions for Higher Order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math>-Laplacian Two-Point Boundary Value Problems 2013 Rajendra Prasad Kapula
P. Murali
Rajendra Kumar Kona
+ PDF Chat Existence of solutions of 𝑥”+𝑥+𝑔(𝑥)=𝑝(𝑡),𝑥(0)=0=𝑥(𝜋) 1986 R. Kannan
Rafael Ortega
+ PDF Chat Positive Solutions for a System of Fourth-Order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>-Laplacian Boundary Value Problems 2013 Lianlong Sun
Zhilin Yang
+ PDF Chat Multiplicity of Positive Solutions for a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math>-Laplacian Type Equation with Critical Nonlinearities 2014 Tsing‐San Hsu
Huei-Li Lin
+ PDF Chat Some Existence Results of Positive Solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>φ</mml:mi></mml:mrow></mml:math>-Laplacian Systems 2014 Xianghui Xu
Yong-Hoon Lee
+ PDF Chat Multiplicity Results for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>p</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:math>-Laplacian Equation with Singular Nonlinearities and Nonlinear Neumann Boundary Condition 2016 Kamel Saoudi
Mouna Kratou
S. Alsadhan
+ Multiple normalized solutions for <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"> <a:mo stretchy="false">(</a:mo> <a:mn>2</a:mn> <a:mo>,</a:mo> <a:mi>q</a:mi> <a:mo stretchy="false">)</a:mo> </a:math>-Laplacian equation problems in whole <d:math xmlns:d="http://www.w3.org/1998/Math/MathML"> <d:msup> <d:mrow class="MJX-TeXAtom-ORD"> <d:mi mathvariant="double-struck">R</d:mi> </d:mrow> <d:mrow class="MJX-TeXAtom-ORD"> <d:mi>N</d:mi> </d:mrow> </d:msup> </d:math> 2024 Renhua Chen
Li Wang
Xin Song
+ Existence of positive solutions for a class of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mtext>&amp;</mml:mtext><mml:mi>q</mml:mi></mml:math> elliptic problems with critical growth on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math> 2011 Giovany M. Figueiredo
+ An existence result for <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"> <a:mo stretchy="false">(</a:mo> <a:mi>p</a:mi> <a:mo>,</a:mo> <a:mi>q</a:mi> <a:mo stretchy="false">)</a:mo> </a:math>-Laplacian BVP with falling zeros. 2024 B. Alreshidi
D. D. Hai
+ Multiplicity of positive solutions to a singular<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>p</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>p</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian system with coupled integral boundary conditions 2016 Jeongmi Jeong
Chan-Gyun Kim
Eun Kyoung Lee