Convergence in trace ideals

Type: Article

Publication Date: 1981-09-01

Citations: 25

DOI: https://doi.org/10.1090/s0002-9939-1981-0619977-2

Abstract

We give an elementary proof of a theorem of Arazy which presents necessary and sufficient conditions on a symmetric sequence so that the associated symmetrically normed trace ideal has the property that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript n Baseline right-arrow upper A"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_n} \to A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the weak operator topology and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar upper A Subscript n Baseline double-vertical-bar right-arrow double-vertical-bar upper A double-vertical-bar"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mi>A</mml:mi> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \| {{A_n}} \right \| \to \left \| A \right \|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar upper A Subscript n Baseline minus upper A double-vertical-bar right-arrow 0"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>−</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \| {{A_n} - A} \right \| \to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Convergence in Trace Ideals 1981 B. Simon
+ PDF Chat Ideal approach to convergence in functional spaces 2023 Serhii Bardyla
Jaroslav Šupina
Lyubomyr Zdomskyy
+ PDF Chat Trace identities and 𝑍/2𝑍-graded invariants 1988 Allan Berele
+ PDF Chat Estimates for inverses of 𝑒^{𝑖𝑛𝑡} in some quotient algebras of 𝐴⁺ 1991 El Hassan Zerouali
+ Two 𝐹_{𝜎𝛿} ideals 2003 Ilijas Farah
Sławomir Solecki
+ Ideal norms and operator ideals 1998 Albrecht Pietsch
Jörg Wenzel
+ PDF Chat On tree ideals 1995 Martin Goldstern
Miroslav Repický
Saharon Shelah
Otmar Spinas
+ Traces on ideals and the commutator property 2017 Jireh Loreaux
Gary Weiss
+ Traces on ideals and the commutator property 2017 Jireh Loreaux
Gary M. Weiss
+ PDF Chat Invariant ideals and Borel sets 1986 Andrzej Pelc
+ PDF Chat Trace-class and centralizers of an 𝐻*-algebra 1970 Parfeny P. Saworotnow
+ Ultrafilters on 𝜔-their ideals and their cardinal characteristics 1999 Saharon Shelah
Jörg Brendle
Saharon Shelah
+ PDF Chat The strict dual of 𝐵*-algebras 1977 John W. Davenport
+ Operator ideals and assembly maps in 𝐾-theory 2013 Guillermo Cortiñas⋆
Gisela Tartaglia
+ PDF Chat Banach spaces which are 𝑀-ideals in their biduals 1984 Peter Harmand
Åsvald Lima
+ PDF Chat Ideals of regular operators on 𝑙² 1983 Wolfgang Arendt
A. R. Sourour
+ PDF Chat A suspension theorem for continuous trace 𝐶*-algebras 1994 Marius Dădărlat
+ PDF Chat Crossed products of continuous-trace 𝐶*-algebras by smooth actions 1988 Iain Raeburn
Jonathan Rosenberg
+ PDF Chat On crossed products with property 𝑇 1987 Shōichi Watanabe
+ PDF Chat Approximating maps and a Stone-Weierstrass theorem for 𝐶*-algebras 1980 John W. Bunce