Momentum space metric, nonlocal operator, and topological insulators

Type: Article

Publication Date: 2010-12-13

Citations: 46

DOI: https://doi.org/10.1103/physrevb.82.245113

Abstract

Momentum space of a gapped quantum system is a metric space: it admits a notion of distance reflecting properties of its quantum ground state. By using this quantum metric, we investigate geometric properties of momentum space. In particular, we introduce a nonlocal operator which represents distance square in real space and show that this corresponds to the Laplacian in curved momentum space, and also derive its path-integral representation in momentum space. The quantum metric itself measures the second cumulant of the position operator in real space, much like the Berry gauge potential measures the first cumulant or the electric polarization in real space. By using the nonlocal operator and the metric, we study some aspects of topological phases such as topological invariants, the cumulants and topological phase transitions. The effect of interactions to the momentum space geometry is also discussed.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Quantum mechanics on noncommutative spaces and squeezed states: A Functional approach 2003 Musongela Lubo
+ PDF Chat Path integral formulation of noncommutative quantum mechanics 2001 Ciprian Acatrinei
+ PDF Chat Relations between topology and the quantum metric for Chern insulators 2021 Tomoki Ozawa
Bruno Mera
+ Momentum Operator 2022 Lukong Cornelius Fai
+ Momentum and Hamiltonian operators in generalized coordinates 1994 Makoto Kato
+ PDF Chat A path integral over Hilbert space for quantum mechanics 2022 Sandro Donadi
Sabine Hossenfelder
+ PDF Chat Geometry of quantum state space and quantum correlations 2016 Prasenjit Deb
+ PDF Chat PATH INTEGRAL APPROACH TO NONCOMMUTATIVE QUANTUM MECHANICS 2004 Бранко Драгович
Zoran Rakić
+ PDF Chat Quantum mechanics on non commutative spaces and squeezedstates: a functional approach 2004 Musongela Lubo
+ Quantum mechanics in the space of distributions, Feynman path integrals, and nonstandard analysis 1998 Ken Loo
+ PDF Chat Berry's Phase in Noncommutative Spaces 2003 S. A. Alavi
+ Momentum-Space Cigar Geometry in Topological Phases 2017 Giandomenico Palumbo
+ Momentum-Space Cigar Geometry in Topological Phases 2017 Giandomenico Palumbo
+ PDF Chat Berry’s Phase in Noncommutative Spaces 2003 S. A. Alavi
+ PDF Chat Momentum Operators in the Unit Square 2013 Steen Pedersen
Feng Tian
+ PDF Chat Path-integral action of a particle in the noncommutative phase-space 2017 Sunandan Gangopadhyay
Aslam Halder
+ Spacetime quantization and geometry of momentum space 1998 R. M. Mir‐Kasimov
+ Quantum metric on the Brillouin Zone in correlated electron systems and its relation to topology for Chern insulators 2022 Takahiro Kashihara
Yoshihiro Michishita
Robert Peters
+ PDF Chat Quantum metric on the Brillouin zone in correlated electron systems and its relation to topology for Chern insulators 2023 Takahiro Kashihara
Yoshihiro Michishita
Robert Peters
+ On the Curved Momentum Space 1991 Ig. Tamm

Works That Cite This (34)

Action Title Year Authors
+ PDF Chat Holographic entanglement renormalization of topological insulators 2016 Xueda Wen
Gil Young Cho
Pedro L. S. Lopes
Yingfei Gu
Xiao‐Liang Qi
Shinsei Ryu
+ PDF Chat Interferometric geometry from symmetry-broken Uhlmann gauge group with applications to topological phase transitions 2021 Héctor Silva
Bruno Mera
Nikola Paunković
+ PDF Chat Intrinsic nonlinear conductivity induced by quantum geometry in altermagnets and measurement of the in-plane Néel vector 2024 Motohiko Ezawa
+ PDF Chat Momentum-space gravity from the quantum geometry and entropy of Bloch electrons 2022 Tyler Smith
Lakshmi Pullasseri
Ajit Srivastava
+ PDF Chat The Euler number of Bloch states manifold and the quantum phases in gapped fermionic systems 2013 Yu-Quan Ma
Shi-Jian Gu
Shu Chen
Heng Fan
Wu-Ming Liu
+ PDF Chat Quantum distance and the Euler number index of the Bloch band in a one-dimensional spin model 2014 Yu-Quan Ma
+ Opacity of graphene independent of light frequency and polarization due to the topological charge of the Dirac points 2023 Matheus S. M. de Sousa
Wei Chen
+ PDF Chat Nonlocal order parameters for states with topological electromagnetic response 2020 Thomas Klein Kvorning
Christian Spånslätt
AtMa P. O. Chan
Shinsei Ryu
+ PDF Chat Measuring the quantum geometry of Bloch bands with current noise 2013 Titus Neupert
Claudio Chamon
Christopher Mudry
+ PDF Chat Semiclassical wave packet dynamics in nonuniform electric fields 2019 Matthew F. Lapa
Taylor L. Hughes

Works Cited by This (37)

Action Title Year Authors
+ PDF Chat Topological insulators and superconductors: tenfold way and dimensional hierarchy 2010 Shinsei Ryu
Andreas P. Schnyder
Akira Furusaki
Andreas W. W. Ludwig
+ PDF Chat Topological field theory of time-reversal invariant insulators 2008 Xiao‐Liang Qi
Taylor L. Hughes
Shou-Cheng Zhang
+ PDF Chat Topological phases and the quantum spin Hall effect in three dimensions 2009 Rahul Roy
+ PDF Chat Two classes of Mott insulator 2003 Dung‐Hai Lee
Steven A. Kivelson
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>classification of quantum spin Hall systems: An approach using time-reversal invariance 2009 Rahul Roy
+ PDF Chat A topological Dirac insulator in a quantum spin Hall phase 2008 David Hsieh
Dong Qian
L. Andrew Wray
Y. Xia
Y. S. Hor
R. J. Cava
M. Zahid Hasan
+ PDF Chat Two-dimensional spin-filtered chiral network model for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>quantum spin-Hall effect 2007 Hideaki Obuse
Akira Furusaki
Shinsei Ryu
Christopher Mudry
+ PDF Chat Topological Insulators in Three Dimensions 2007 Liang Fu
C. L. Kane
E. J. Melé
+ PDF Chat Plateau transitions in the pairing model: Topology and selection rule 2000 Yoshifumi Morita
Yasuhiro Hatsugai
+ PDF Chat Fidelity in topological quantum phases of matter 2009 Silvano Garnerone
Damian F. Abasto
Stephan Haas
Paolo Zanardi