Integer points on curves of genus two and their Jacobians

Type: Article

Publication Date: 1994-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9947-1994-1184116-2

Abstract

Let <italic>C</italic> be a curve of genus 2 defined over a number field, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Theta"> <mml:semantics> <mml:mi mathvariant="normal">Θ<!-- Θ --></mml:mi> <mml:annotation encoding="application/x-tex">\Theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the image of <italic>C</italic> embedded into its Jacobian <italic>J</italic>. We show that the heights of points of <italic>J</italic> which are integral with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 2 right-bracket Subscript asterisk Baseline normal upper Theta"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">[</mml:mo> <mml:mn>2</mml:mn> <mml:msub> <mml:mo stretchy="false">]</mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> </mml:mrow> <mml:mi mathvariant="normal">Θ<!-- Θ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{[2]_\ast }\Theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be effectively bounded. As a result, if <italic>P</italic> is a point on <italic>C</italic>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P overbar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>P</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> its image under the hyperelliptic involution, then the heights of points on <italic>C</italic> which are integral with respect to <italic>P</italic> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P overbar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>P</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be effectively bounded, in such a way that we can isolate the dependence on <italic>P</italic>, and show that if the height of <italic>P</italic> is bigger than some bound, then there are no points which are <italic>S</italic>-integral with respect to <italic>P</italic> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P overbar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>P</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We relate points on <italic>C</italic> which are integral with respect to <italic>P</italic> to points on <italic>J</italic> which are integral with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Theta"> <mml:semantics> <mml:mi mathvariant="normal">Θ<!-- Θ --></mml:mi> <mml:annotation encoding="application/x-tex">\Theta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and discuss approaches toward bounding the heights of the latter.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Examples of torsion points on genus two curves 2000 John Boxall
David Grant
+ Classes of Weierstrass points on genus 2 curves 2018 Renzo Cavalieri
Nicola Tarasca
+ PDF Chat Computing nonsurjective primes associated to Galois representations of genus 2 curves 2024 Barinder S. Banwait
Armand Brumer
Hyun Kim
Zev Klagsbrun
Jacob Mayle
Padmavathi Srinivasan
Isabel Vogt
+ PDF Chat On the variety of plane curves of degree 𝑑 with 𝛿 nodes and 𝜅 cusps 1989 Pyung-Lyun Kang
+ Integer Points on Curves of Genus 1 1983 Joseph H. Silverman
+ PDF Chat Curves of genus 2 with split Jacobian 1988 Robert Michael Kuhn
+ PDF Chat A note on the variety of plane curves with nodes and cusps 1989 Pyung-Lyun Kang
+ Computing quadratic points on modular curves 𝑋₀(𝑁) 2023 Nikola Adžaga
Timo Keller
Philippe Michaud‐Jacobs
Filip Najman
Ekin Özman
Borna Vukorepa
+ PDF Chat Gluing curves of genus 1 and 2 along their 2-torsion 2020 Jeroen Hanselman
Sam Schiavone
Jeroen Sijsling
+ PDF Chat Rational points on rank 2 genus 2 bielliptic curves in the LMFDB 2024 Francesca Bianchi
Oana Padurariu
+ Families of genus-2 curves with 5-torsion 2024 Noam Elkies
+ PDF Chat A classification of genus 0 modular curves with rational points 2023 Rakvi
+ PDF Chat Examples of genus two CM curves defined over the rationals 1999 Paul van Wamelen
+ Gonality of the modular curve 𝑋₀(𝑁) 2023 Filip Najman
Petar Orlić
+ PDF Chat On the Clifford index of algebraic curves 1986 Edoardo Ballico
+ Affine curves with infinitely many integral points 2002 Dimitrios Poulakis
+ Torsion points of order 2𝑔+1 on odd degree hyperelliptic curves of genus 𝑔 2020 Boris M. Bekker
Yuri G. Zarhin
+ The local-global principle for integral points on stacky curves 2022 Manjul Bhargava
Bjorn Poonen
+ PDF Chat Dynamics of quadratic polynomials and rational points on a curve of genus 4 2023 Hang Fu
Michael Stoll
+ Rational curves on general projective hypersurfaces 2002 Gianluca Pacienza