Computing the Gamma Function Using Contour Integrals and Rational Approximations

Type: Article

Publication Date: 2007-01-01

Citations: 52

DOI: https://doi.org/10.1137/050646342

Abstract

Some of the best methods for computing the gamma function are based on numerical evaluation of Hankel's contour integral. For example, Temme evaluates this integral based on steepest descent contours by the trapezoid rule. Here we investigate a different approach to the integral: the application of the trapezoid rule on Talbot‐type contours using optimal parameters recently derived by Weideman for computing inverse Laplace transforms. Relatedly, we also investigate quadrature formulas derived from best approximations to $\exp(z)$ on the negative real axis, following Cody, Meinardus, and Varga. The two methods are closely related, and both converge geometrically. We find that the new methods are competitive with existing ones, even though they are based on generic tools rather than on specific analysis of the gamma function.

Locations

  • SIAM Journal on Numerical Analysis - View
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF

Similar Works

Action Title Year Authors
+ COMPUTING THE GAMMA FUNCTION USING CONTOUR 2007 Rational Approximations
Lloyd N. TREFETHENt
+ PDF Chat Computing Stieltjes constants using complex integration 2018 Fredrik Johansson
Iaroslav V. Blagouchine
+ Computing Stieltjes constants using complex integration 2018 Fredrik Johansson
Iaroslav V. Blagouchine
+ Computing Stieltjes constants using complex integration 2018 Fredrik Johansson
Iaroslav V. Blagouchine
+ PDF Chat Arbitrary-precision computation of the gamma function 2023 Fredrik Johansson
+ Numerical calculation of incomplete gamma functions by the trapezoidal rule 1986 Giampietro Allasia
R. Besenghi
+ PDF Chat The Numerical Computation of the Product of Conjugate Imaginary Gamma Functions 1940 Arthur Cohen
+ The Gamma Function via Interpolation 2021 Matthew F. Causley
+ PDF Chat Talbot quadratures and rational approximations 2006 Lloyd N. Trefethen
J. A. C. Weideman
T. Schmelzer
+ The Gamma function revisited 2006 Warren D. Smith
+ Calculation of the gamma function 1966 B.D. Vorontsov
+ Evaluation of the Gamma Function by Means of Padé Approximations 1970 Yudell L. Luke
+ PDF Chat Preliminary Approach to Calculate the Gamma Function without Numerical Integration 2023 Ismail Abbas
+ The determination of incomplete gamma functions through analytic integration 1979 Riho Terras
+ PDF Chat Chebyshev approximations to the Gamma function 1961 H. Werner
Robert Collinge
+ PDF Chat Chebyshev Approximations to the Gamma Function 1961 H. Werner
Robert Collinge
+ The Gamma Function 2011 Ranjan Roy
+ The Gamma Function 2021 Charles H. C. Little
Kee L. Teo
Bruce van Brunt
+ Properties and Computation of the Functional Inverse of Gamma 2017 K. Amenyo Folitse
David J. Jeffrey
Robert M. Corless
+ دراسة بعض تطبيقات دالة غاما 2015 نبيل خضير سلمان