Thorn orthogonality and domination in unstable theories

Type: Article
Publication Date: 2011-01-01
Citations: 10
DOI: https://doi.org/10.4064/fm214-3-3

Abstract

We study orthogonality, domination, weight, regular and minimal types in the contexts of rosy and super-rosy theories.

Locations

Ask a Question About This Paper

Summary

Login to see paper summary

In the first part of the paper we study orthogonality, domination, weight, regular and minimal types in the contexts of rosy and super-rosy theories. Then we try to develop analogous … In the first part of the paper we study orthogonality, domination, weight, regular and minimal types in the contexts of rosy and super-rosy theories. Then we try to develop analogous theory for arbitrary dependent theories.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content. A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Degeneracy of triality Degeneracy of triality
The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank cannot be reduced to the study of its … The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank cannot be reduced to the study of its dp-minimal types, and we discuss the possible relations between dp-rank and VC-density.
Abstract We prove that in theories without the tree property of the second kind (which include dependent and simple theories) forking and dividing over models are the same, and in … Abstract We prove that in theories without the tree property of the second kind (which include dependent and simple theories) forking and dividing over models are the same, and in fact over any extension base. As an application we show that dependence is equivalent to bounded non-forking assuming NTP 2 .
We investigate the notions of strict independence and strict non-forking, and establish basic properties and connections between the two. In particular, it follows from our investigation that in resilient theories … We investigate the notions of strict independence and strict non-forking, and establish basic properties and connections between the two. In particular, it follows from our investigation that in resilient theories strict non-forking is symmetric. Based on this study, we develop notions of weight which characterize NTP 2 , dependence and strong dependence. Many of our proofs rely on careful analysis of sequences that witness dividing. We prove simple characterizations of such sequences in resilient theories, as well as of Morley sequences which are witnesses. As a by-product we obtain information on types co-dominated by generically stable types in dependent theories. For example, we prove that every Morley sequence in such a type is a witness.
We study notions of independence appropriate for a stability theory of metric abstract elementary classes (for short, MAECs). We build on previous notions used in the discrete case, and adapt … We study notions of independence appropriate for a stability theory of metric abstract elementary classes (for short, MAECs). We build on previous notions used in the discrete case, and adapt definitions to the metric case. In particular, we study notions that behave well under superstability‐like assumptions. Also, under uniqueness of limit models, we study domination, orthogonality and parallelism of Galois types in MAECs.
Abstract We study dp-minimal and strongly dependent theories and investigate connections between these notions and weight. Abstract We study dp-minimal and strongly dependent theories and investigate connections between these notions and weight.
We investigate the interaction between the product of invariant types and domination-equivalence. We present a theory where the latter is not a congruence with respect to the former, provide sufficient … We investigate the interaction between the product of invariant types and domination-equivalence. We present a theory where the latter is not a congruence with respect to the former, provide sufficient conditions for it to be, and study the resulting quotient when it is.
The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank can not be reduced to the study of … The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank can not be reduced to the study of its dp-minimal types, and discuss the possible relations between dp-rank and VC-density.
We prove that in NTP_2 theories if p is a dependent type with dp-rank >= \kappa, then this can be witnessed by indiscernible sequences of tuples satisfying p. If p … We prove that in NTP_2 theories if p is a dependent type with dp-rank >= \kappa, then this can be witnessed by indiscernible sequences of tuples satisfying p. If p has dp-rank infinity, then this can be witnessed by singletons (in any theory).
Abstract notions of “smallness” are among the most important tools that model theory offers for the analysis of arbitrary structures. The two most useful notions of this kind are forking … Abstract notions of “smallness” are among the most important tools that model theory offers for the analysis of arbitrary structures. The two most useful notions of this kind are forking (which is closely related to certain measure zero ideals) and thorn-forking (which generalizes the usual topological dimension). Under certain mild assumptions, forking is the finest notion of smallness, whereas thorn-forking is the coarsest. In this paper we study forking and thorn-forking, restricting ourselves to the class of generically stable types. Our main conclusion is that in this context these two notions coincide. We explore some applications of this equivalence.
We introduce the notion of the burden of a partial type in a complete first-order theory and call a theory strong if all types have almost finite burden. In a … We introduce the notion of the burden of a partial type in a complete first-order theory and call a theory strong if all types have almost finite burden. In a simple theory it is the supremum of the weights of all extensions of the type, and a simple theory is strong if and only if all types have finite weight. A theory without the independence property is strong if and only if it is strongly dependent. As a corollary, a stable theory is strongly dependent if and only if all types have finite weight. A strong theory does not have the tree property of the second kind.
Abstract We develop the theory of generically stable types, independence relation based on nonforking and stable weight in the context of dependent theories. Abstract We develop the theory of generically stable types, independence relation based on nonforking and stable weight in the context of dependent theories.
Abstract We study the behaviour of stable types in rosy theories. The main technical result is that a non-þ-forking extension of an unstable type is unstable. We apply this to … Abstract We study the behaviour of stable types in rosy theories. The main technical result is that a non-þ-forking extension of an unstable type is unstable. We apply this to show that a rosy group with a þ-generic stable type is stable. In the context of super-rosy theories of finite rank we conclude that non-trivial stable types of U þ -rank 1 must arise from definable stable sets.
Abstract We develop a new notion of independence (ϸ-independence, read “thorn”-independence) that arises from a family of ranks suggested by Scanlon (ϸ-ranks). We prove that in a large class of … Abstract We develop a new notion of independence (ϸ-independence, read “thorn”-independence) that arises from a family of ranks suggested by Scanlon (ϸ-ranks). We prove that in a large class of theories (including simple theories and o-minimal theories) this notion has many of the properties needed for an adequate geometric structure. We prove that ϸ-independence agrees with the usual independence notions in stable, supersimple and o-minimal theories. Furthermore, we give some evidence that the equivalence between forking and ϸ-forking in simple theories might be closely related to one of the main open conjectures in simplicity theory, the stable forking conjecture. In particular, we prove that in any simple theory where the stable forking conjecture holds, ϸ-independence and forking independence agree.
Abstract We study dp-minimal and strongly dependent theories and investigate connections between these notions and weight. Abstract We study dp-minimal and strongly dependent theories and investigate connections between these notions and weight.