𝐴_{∞}-condition for the Jacobian of a quasiconformal mapping

Type: Article

Publication Date: 1994-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0002-9939-1994-1169029-x

Abstract

We show that the Jacobian <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript f"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mi>f</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_f}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a quasi-conformal mapping <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f colon bold upper B Superscript n Baseline right-arrow upper D"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">B</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f:{{\mathbf {B}}^n} \to D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript normal infinity"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-weight in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper B Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">B</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {B}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a John domain. A similar question concerning <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J Subscript f minus 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>f</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_{f - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also studied.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A ∞ -Condition for the Jacobian of a Quasi-Conformal Mapping 1994 Juha Heinonen
Pekka Koskela
+ PDF Chat A necessary and sufficient condition for the asymptotic version of Ahlfors’ distortion property 1983 Burton Rodin
S. E. Warschawski
+ Isometries for the modulus metric are quasiconformal mappings 2018 Dimitrios Betsakos
Stamatis Pouliasis
+ Conformality of a quasiconformal mapping at a point 2003 Vladimir Gutlyanskiǐ
Олли Мартио
+ PDF Chat Martin compactifications and quasiconformal mappings 1985 Shigeo Segawa
Toshimasa Tada
+ PDF Chat A remark on the maximal dilatation of a quasiconformal mapping 1984 Матти Вуоринен
+ PDF Chat Dimension-free quasiconformal distortion in 𝑛-space 1986 G. D. Anderson
M. K. Vamanamurthy
Матти Вуоринен
+ PDF Chat On the distortion of 𝑛-dimensional quasiconformal mappings 1986 Матти Вуоринен
+ PDF Chat Compact conformally flat hypersurfaces 1985 Manfredo do Carmo
Marcos Dajczer
Francesco Mercuri
+ Existence of quasiconformal mappings in a given Hardy space 2023 Ondrěj Bouchala
Pekka Koskela
+ PDF Chat On the uniform convergence of quasiconformal mappings 1973 Bruce Palka
+ PDF Chat Conformally natural extension of vector fields from 𝑆ⁿ⁻¹ to 𝐵ⁿ 1988 Clifford J. Earle
+ PDF Chat A Property of Quasi-Conformal Mapping 1954 H. L. Royden
+ A note on Quasi-Conformal mapping 1966 Tsugio Kido
+ PDF Chat The degree of regularity of a quasiconformal mapping 1994 Pekka Koskela
+ PDF Chat A characterization of certain measures using quasiconformal mappings 1990 Craig A. Nolder
+ Regularity of the Beltrami equation and 1-quasiconformal embeddings of surfaces in ℝ³ 2009 Shanshuang Yang
+ PDF Chat Quasiconformal mappings and Ahlfors-David curves 1994 Paul MacManus
+ PDF Chat A note on integral means of the derivative in conformal mapping 1986 Nikolai Makarov
+ PDF Chat A remark on angular complex dilatations of quasiconformal mappings 1988 Richard Fehlmann