Type: Article
Publication Date: 2008-04-25
Citations: 20
DOI: https://doi.org/10.1103/physrevd.77.075009
Extrapolations of soft scalar mass parameters in supersymmetric theories can be used to explore elements of the physics scenario near the grand unification scale. We investigate the potential of this method in the lepton sector of SO(10) which incorporates right-handed neutrino superfields. The method is exemplified in two models by exploring limits on the precision that can be expected from coherent LHC and ${e}^{+}{e}^{\ensuremath{-}}$ collider analyses in the reconstruction of the fundamental scalar mass parameters at the unification scale and of the D-terms related to the breaking of grand unification symmetries. In addition, the mass of the third-generation right-handed neutrino can be estimated in seesaw scenarios. Even though the models are simplified and not intended to account for all aspects of a final comprehensive SO(10) theory, they provide nevertheless a valid base for identifying essential elements that can be inferred on the fundamental high-scale theory from high-energy experiments.