On a Boltzmann-type price formation model

Type: Article

Publication Date: 2013-07-03

Citations: 34

DOI: https://doi.org/10.1098/rspa.2013.0126

Abstract

In this paper we present a Boltzmann type price formation model, which is motivated by a parabolic free boundary model for the evolution of the prize presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments.

Locations

  • Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Price formation model with zero-Neumann boundary condition 2018 Chubo Deng
+ On the asymptotic behavior of a Boltzmann-type price formation model 2013 Martin Burger
Luis Caffarelli
Peter A. Markowich
Marie-Thérèse Wolfram
+ On the asymptotic behavior of a Boltzmann-type price formation model 2013 Martin Burger
Luis Caffarelli
Peter A. Markowich
Marie-Thérèse Wolfram
+ PDF Chat On the asymptotic behavior of a Boltzmann-type price formation model 2014 Martin Burger
Luis Caffarelli
Peter A. Markowich
Marie-Thérèse Wolfram
+ Kinetic models for goods exchange in a multi-agent market 2017 Carlo Brugna
Giuseppe Toscani
+ Parabolic free boundary price formation models under market size fluctuations 2016 Peter A. Markowich
Josef Teichmann
Marie-Thérèse Wolfram
+ Parabolic free boundary price formation models under market size fluctuations 2016 Peter A. Markowich
Josef Teichmann
Marie-Thérèse Wolfram
+ PDF Chat Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations 2016 Peter A. Markowich
Josef Teichmann
Marie-Thérèse Wolfram
+ The Master Equation in a Bounded Domain with Absorption 2022 Luca Di Persio
Matteo Garbelli
Michele Ricciardi
+ Mathematical model of a kinetic boundary layer 2014 A. L. Ankudinov
+ The Boltzmann Equation as a Physical and Mathematical Model 2001 В. В. Аристов
+ On Discrete Models of Boltzmann-Type Kinetic Equations 2024 A. V. Bobylev
+ PDF Chat A Kinetic Description for the Herding Behavior in Financial Market 2019 Hyeong‐Ohk Bae
Seung Yun Cho
Jeongho Kim
Seok-Bae Yun
+ PDF Chat ROBUST MATHEMATICAL FORMULATION AND PROBABILISTIC DESCRIPTION OF AGENT-BASED COMPUTATIONAL ECONOMIC MARKET MODELS 2020 Maximilian Beikirch
Simon Cramer
Martin Frank
Philipp Otte
Emma Pabich
Torsten Trimborn
+ Discrete kinetic theory and hyperbolic balance laws (Workshop on the Boltzmann Equation, Microlocal Analysis and Related Topics) 2017 Shuichi Kawashima
+ Dynamics of Phase Boundary with Particle Annihilation 2012 V. A. Malyshev
Anatoly Manita
+ Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires 2013 David Godinho
+ PDF Chat A kinetic equation for economic value estimation with irrationality and herding 2016 Bertram Düring
Ansgar Jüngel
Lara Trussardi
+ Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models 2019 Maximilian Beikirch
Simon Cramer
Martin Frank
Philipp Otte
Emma Pabich
Torsten Trimborn
+ Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models 2019 Maximilian Beikirch
Simon Cramer
Martin Frank
Philipp Otte
Emma Pabich
Torsten Trimborn