Seifert matrices and 6-knots

Type: Article

Publication Date: 1988-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9947-1988-0961617-8

Abstract

A new classification of simple <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Z"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Z}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion-free <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 q"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-knots, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q greater-than-or-slanted-equals 3"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">q \geqslant 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is given in terms of Seifert matrices modulo an equivalence relation. As a result the classification of such <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 q"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-knots, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q greater-than-or-slanted-equals 4"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">q \geqslant 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-forms is extended to the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q equals 3"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">q = 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Seifert Matrices and 6-Knots 1988 J. A. Hillman
C. Kearton
+ New examples of non–slice, algebraically slice knots 2001 Charles Livingston
+ PDF Chat Simple knots which are doubly-null-cobordant 1975 C. Kearton
+ PDF Chat Integer invariants of certain even-dimensional knots 1985 C. Kearton
+ Knot signature functions are independent 2004 Jae Cha
Charles Livingston
+ PDF Chat An algebraic classification of certain simple even-dimensional knots 1983 C. Kearton
+ PDF Chat Representing knot groups into 𝑆𝐿(2,𝐶) 1992 D. Cooper
D. D. Long
+ PDF Chat Locally flat 2-knots in 𝑆²×𝑆² with the same fundamental group 1991 Yoshihisa Sato
+ PDF Chat Representations of knot groups in 𝑆𝑈(2) 1991 Eric Klassen
+ Trinomials, torus knots and chains 2022 Waldemar Barrera
Julio C. Magaña-Cáceres
Juan Pablo Navarrete
+ PDF Chat Knot modules. I 1977 Jerome Levine
+ PDF Chat Blanchfield duality and simple knots 1975 C. Kearton
+ KNOTTY MATRICES IN KNOTS 1999 Weiqing Gu
Shenjun Jiang
+ Knot modules and seifert matrices 1978 H. F. Trotter
+ PDF Chat Slicing knots in definite 4-manifolds 2024 Alexandra Kjuchukova
Allison N. Miller
Arunima Ray
Sümeyra Sakallı
+ PDF Chat Geometric indices and the Alexander polynomial of a knot 1996 Hirozumi Fujii
+ On certain 𝐿-functions for deformations of knot group representations 2016 Takahiro Kitayama
Masanori Morishita
Ryoto Tange
Yuji Terashima
+ Exotic t-structures for two-block Springer fibres 2022 Rina Anno
Vinoth Nandakumar
+ PDF Chat How many knots have the same group? 1980 Jonathan Simon
+ PDF Chat Branched cyclic covers of simple knots 1984 Paul Strickland